Download
s12975-021-00891-8.pdf 1,54MB
WeightNameValue
1000 Titel
  • Imaging-Based Outcome Prediction of Acute Intracerebral Hemorrhage
1000 Autor/in
  1. Nawabi, Jawed |
  2. Kniep, Helge |
  3. Elsayed, Sarah |
  4. Friedrich, Constanze |
  5. Sporns, Peter |
  6. Rusche, Thilo |
  7. Böhmer, Maik |
  8. Morotti, Andrea |
  9. Schlunk, Frieder |
  10. Dührsen, Lasse |
  11. Broocks, Gabriel |
  12. Schön, Gerhard |
  13. Quandt, Fanny |
  14. Thomalla, Götz |
  15. Fiehler, Jens |
  16. Hanning, Uta |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-02-06
1000 Erschienen in
1000 Quellenangabe
  • 12(6):958-967
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s12975-021-00891-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557152/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • We hypothesized that imaging-only-based machine learning algorithms can analyze non-enhanced CT scans of patients with acute intracerebral hemorrhage (ICH). This retrospective multicenter cohort study analyzed 520 non-enhanced CT scans and clinical data of patients with acute spontaneous ICH. Clinical outcome at hospital discharge was dichotomized into good outcome and poor outcome using different modified Rankin Scale (mRS) cut-off values. Predictive performance of a random forest machine learning approach based on filter- and texture-derived high-end image features was evaluated for differentiation of functional outcome at mRS 2, 3, and 4. Prediction of survival (mRS ≤ 5) was compared to results of the ICH Score. All models were tuned, validated, and tested in a nested 5-fold cross-validation approach. Receiver-operating-characteristic area under the curve (ROC AUC) of the machine learning classifier using image features only was 0.80 (95% CI [0.77; 0.82]) for predicting mRS ≤ 2, 0.80 (95% CI [0.78; 0.81]) for mRS ≤ 3, and 0.79 (95% CI [0.77; 0.80]) for mRS ≤ 4. Trained on survival prediction (mRS ≤ 5), the classifier reached an AUC of 0.80 (95% CI [0.78; 0.82]) which was equivalent to results of the ICH Score. If combined, the integrated model showed a significantly higher AUC of 0.84 (95% CI [0.83; 0.86], P value <0.05). Accordingly, sensitivities were significantly higher at Youden Index maximum cut-offs (77% vs. 74% sensitivity at 76% specificity, P value <0.05). Machine learning-based evaluation of quantitative high-end image features provided the same discriminatory power in predicting functional outcome as multidimensional clinical scoring systems. The integration of conventional scores and image features had synergistic effects with a statistically significant increase in AUC.
1000 Sacherschließung
lokal Original Article
lokal Radiomics
lokal Machine Learning
lokal Humans [MeSH]
lokal Prognosis [MeSH]
lokal Cerebral Hemorrhage/diagnostic imaging [MeSH]
lokal Intracerebral hemorrhage
lokal Machine Learning [MeSH]
lokal Retrospective Studies [MeSH]
lokal Outcome prediction
lokal Cohort Studies [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-1137-0643|https://frl.publisso.de/adhoc/uri/S25pZXAsIEhlbGdl|https://frl.publisso.de/adhoc/uri/RWxzYXllZCwgU2FyYWg=|https://frl.publisso.de/adhoc/uri/RnJpZWRyaWNoLCBDb25zdGFuemU=|https://frl.publisso.de/adhoc/uri/U3Bvcm5zLCBQZXRlcg==|https://frl.publisso.de/adhoc/uri/UnVzY2hlLCBUaGlsbw==|https://frl.publisso.de/adhoc/uri/QsO2aG1lciwgTWFpaw==|https://frl.publisso.de/adhoc/uri/TW9yb3R0aSwgQW5kcmVh|https://frl.publisso.de/adhoc/uri/U2NobHVuaywgRnJpZWRlcg==|https://frl.publisso.de/adhoc/uri/RMO8aHJzZW4sIExhc3Nl|https://frl.publisso.de/adhoc/uri/QnJvb2NrcywgR2FicmllbA==|https://frl.publisso.de/adhoc/uri/U2Now7ZuLCBHZXJoYXJk|https://frl.publisso.de/adhoc/uri/UXVhbmR0LCBGYW5ueQ==|https://frl.publisso.de/adhoc/uri/VGhvbWFsbGEsIEfDtnR6|https://frl.publisso.de/adhoc/uri/RmllaGxlciwgSmVucw==|https://frl.publisso.de/adhoc/uri/SGFubmluZywgVXRh
1000 Hinweis
  • DeepGreen-ID: 429f7dcea46340cb92ca271f9a246881 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
  1. Imaging-Based Outcome Prediction of Acute Intracerebral Hemorrhage
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6444158.rdf
1000 Erstellt am 2023-04-27T12:12:16.041+0200
1000 Erstellt von 322
1000 beschreibt frl:6444158
1000 Zuletzt bearbeitet 2023-10-20T12:06:24.964+0200
1000 Objekt bearb. Fri Oct 20 12:06:24 CEST 2023
1000 Vgl. frl:6444158
1000 Oai Id
  1. oai:frl.publisso.de:frl:6444158 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source