Download
s11548-021-02336-x.pdf 1,35MB
WeightNameValue
1000 Titel
  • Laparoscopic augmented reality registration for oncological resection site repair
1000 Autor/in
  1. Joeres, Fabian |
  2. Mielke, Tonia |
  3. Hansen, Christian |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-04-02
1000 Erschienen in
1000 Quellenangabe
  • 16(9):1577-1586
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-021-02336-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354909/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Purpose!#!Resection site repair during laparoscopic oncological surgery (e.g. laparoscopic partial nephrectomy) poses some unique challenges and opportunities for augmented reality (AR) navigation support. This work introduces an AR registration workflow that addresses the time pressure that is present during resection site repair.!##!Methods!#!We propose a two-step registration process: the AR content is registered as accurately as possible prior to the tumour resection (the primary registration). This accurate registration is used to apply artificial fiducials to the physical organ and the virtual model. After the resection, these fiducials can be used for rapid re-registration (the secondary registration). We tested this pipeline in a simulated-use study with [Formula: see text] participants. We compared the registration accuracy and speed for our method and for landmark-based registration as a reference.!##!Results!#!Acquisition of and, thereby, registration with the artificial fiducials were significantly faster than the initial use of anatomical landmarks. Our method also had a trend to be more accurate in cases in which the primary registration was successful. The accuracy loss between the elaborate primary registration and the rapid secondary registration could be quantified with a mean target registration error increase of 2.35 mm.!##!Conclusion!#!This work introduces a registration pipeline for AR navigation support during laparoscopic resection site repair and provides a successful proof-of-concept evaluation thereof. Our results indicate that the concept is better suited than landmark-based registration during this phase, but further work is required to demonstrate clinical suitability and applicability.
1000 Sacherschließung
lokal Original Article
lokal Registration
lokal Laparoscopy [MeSH]
lokal Surgery, Computer-Assisted [MeSH]
lokal Humans [MeSH]
lokal Augmented reality
lokal Nephrectomy [MeSH]
lokal Partial nephrectomy
lokal Imaging, Three-Dimensional [MeSH]
lokal Laparoscopic surgery
lokal Augmented Reality [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8105-9263|https://orcid.org/0000-0002-2363-2460|https://orcid.org/0000-0002-5734-7529
1000 Hinweis
  • DeepGreen-ID: abafa3fb79334781ad9b1465afe754f6 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6444545.rdf
1000 Erstellt am 2023-04-27T13:34:41.366+0200
1000 Erstellt von 322
1000 beschreibt frl:6444545
1000 Zuletzt bearbeitet 2023-10-20T13:04:49.164+0200
1000 Objekt bearb. Fri Oct 20 13:04:49 CEST 2023
1000 Vgl. frl:6444545
1000 Oai Id
  1. oai:frl.publisso.de:frl:6444545 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source