Download
s10669-021-09824-0.pdf 1,46MB
WeightNameValue
1000 Titel
  • A prescriptive framework for recommending decision attributes of infrastructure disaster recovery problems
1000 Autor/in
  1. Zamanifar, Milad |
  2. Hartmann, Timo |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-23
1000 Erschienen in
1000 Quellenangabe
  • 41(4):633-650
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10669-021-09824-0 |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This paper proposes a framework to systematically evaluate and select attributes of decision models used in disaster risk management. In doing so, we formalized the attribute selection process as a sequential screening-utility problem by formulating a prescriptive decision model. The aim is to assist decision-makers in producing a ranked list of attributes and selecting a set among them. We developed an evaluation process consisting of ten criteria in three sequential stages. We used a combination of three decision rules for the evaluation process, alongside mathematically integrated compensatory and non-compensatory techniques as the aggregation methods. We implemented the framework in the context of disaster resilient transportation network to investigate its performance and outcomes. Results show that the framework acted as an inclusive systematic decision aiding mechanism and promoted creative and collaborative decision-making. Preliminary investigations suggest the successful application of the framework in evaluating and selecting a tenable set of attributes. Further analyses are required to discuss the performance of the produced attributes. The properties of the resulting attributes and feedback of the users suggest the quality of outcomes compared to the retrospective attributes that were selected in an unaided selection process. Research and practice can use the framework to conduct a systematic problem-structuring phase of decision analysis and select an equitable set of decision attributes.
1000 Sacherschließung
lokal Disaster
lokal Attributes
lokal Article
lokal Problem structuring
lokal Resilience
lokal Decision-making
lokal Environment
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WmFtYW5pZmFyLCBNaWxhZA==|https://frl.publisso.de/adhoc/uri/SGFydG1hbm4sIFRpbW8=
1000 Hinweis
  • DeepGreen-ID: 5a8aafbf7aee420f847e869f3bf8cffe ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6446079.rdf
1000 Erstellt am 2023-04-28T12:07:33.575+0200
1000 Erstellt von 322
1000 beschreibt frl:6446079
1000 Zuletzt bearbeitet 2023-10-20T17:30:06.738+0200
1000 Objekt bearb. Fri Oct 20 17:30:06 CEST 2023
1000 Vgl. frl:6446079
1000 Oai Id
  1. oai:frl.publisso.de:frl:6446079 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source