Download
s00401-021-02386-0.pdf 2,18MB
WeightNameValue
1000 Titel
  • DNA methylation-based classification of malformations of cortical development in the human brain
1000 Autor/in
  1. Jabari, Samir |
  2. Kobow, Katja |
  3. Pieper, Tom |
  4. Hartlieb, Till |
  5. Kudernatsch, Manfred |
  6. Polster, Tilman |
  7. Bien, Christian G. |
  8. Kalbhenn, Thilo |
  9. Simon, Matthias |
  10. Hamer, Hajo |
  11. Rössler, Karl |
  12. Feucht, Martha |
  13. Mühlebner, Angelika |
  14. Najm, Imad |
  15. Peixoto-Santos, José Eduardo |
  16. Gil-Nagel, Antonio |
  17. Delgado, Rafael Toledano |
  18. Aledo-Serrano, Angel |
  19. Hou, Yanghao |
  20. Coras, Roland |
  21. von Deimling, Andreas |
  22. Blümcke, Ingmar |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-11-19
1000 Erschienen in
1000 Quellenangabe
  • 143(1):93-104
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00401-021-02386-0 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732912/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Malformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular classification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.
1000 Sacherschließung
lokal Adolescent [MeSH]
lokal Female [MeSH]
lokal Epigenetic
lokal Adult [MeSH]
lokal Deep Learning [MeSH]
lokal Humans [MeSH]
lokal Retrospective Studies [MeSH]
lokal Middle Aged [MeSH]
lokal Cortical malformation
lokal Epilepsy/etiology [MeSH]
lokal Malformations of Cortical Development/diagnosis [MeSH]
lokal Infant [MeSH]
lokal Male [MeSH]
lokal DNA Methylation [MeSH]
lokal Malformations of Cortical Development/classification [MeSH]
lokal Original Paper
lokal Young Adult [MeSH]
lokal Deep learning
lokal Child [MeSH]
lokal Brain development
lokal Epilepsy
lokal Child, Preschool [MeSH]
lokal Malformations of Cortical Development/genetics [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SmFiYXJpLCBTYW1pcg==|https://orcid.org/0000-0002-0074-2480|https://frl.publisso.de/adhoc/uri/UGllcGVyLCBUb20=|https://frl.publisso.de/adhoc/uri/SGFydGxpZWIsIFRpbGw=|https://frl.publisso.de/adhoc/uri/S3VkZXJuYXRzY2gsIE1hbmZyZWQ=|https://frl.publisso.de/adhoc/uri/UG9sc3RlciwgVGlsbWFu|https://frl.publisso.de/adhoc/uri/QmllbiwgQ2hyaXN0aWFuIEcu|https://frl.publisso.de/adhoc/uri/S2FsYmhlbm4sIFRoaWxv|https://frl.publisso.de/adhoc/uri/U2ltb24sIE1hdHRoaWFz|https://frl.publisso.de/adhoc/uri/SGFtZXIsIEhham8=|https://frl.publisso.de/adhoc/uri/UsO2c3NsZXIsIEthcmw=|https://frl.publisso.de/adhoc/uri/RmV1Y2h0LCBNYXJ0aGE=|https://frl.publisso.de/adhoc/uri/TcO8aGxlYm5lciwgQW5nZWxpa2E=|https://frl.publisso.de/adhoc/uri/TmFqbSwgSW1hZA==|https://frl.publisso.de/adhoc/uri/UGVpeG90by1TYW50b3MsIEpvc8OpIEVkdWFyZG8=|https://frl.publisso.de/adhoc/uri/R2lsLU5hZ2VsLCBBbnRvbmlv|https://frl.publisso.de/adhoc/uri/RGVsZ2FkbywgUmFmYWVsIFRvbGVkYW5v|https://frl.publisso.de/adhoc/uri/QWxlZG8tU2VycmFubywgQW5nZWw=|https://frl.publisso.de/adhoc/uri/SG91LCBZYW5naGFv|https://frl.publisso.de/adhoc/uri/Q29yYXMsIFJvbGFuZA==|https://frl.publisso.de/adhoc/uri/dm9uIERlaW1saW5nLCBBbmRyZWFz|https://frl.publisso.de/adhoc/uri/QmzDvG1ja2UsIEluZ21hcg==
1000 Hinweis
  • DeepGreen-ID: 224255e6642a4ae9be982c166ecf6197 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6447507.rdf
1000 Erstellt am 2023-05-03T15:36:07.036+0200
1000 Erstellt von 322
1000 beschreibt frl:6447507
1000 Zuletzt bearbeitet 2023-10-20T20:43:12.943+0200
1000 Objekt bearb. Fri Oct 20 20:43:12 CEST 2023
1000 Vgl. frl:6447507
1000 Oai Id
  1. oai:frl.publisso.de:frl:6447507 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source