Download
s00429-021-02418-1.pdf 1,42MB
WeightNameValue
1000 Titel
  • Is it left or is it right? A classification approach for investigating hemispheric differences in low and high dimensionality
1000 Autor/in
  1. Friedrich, Patrick |
  2. Patil, Kaustubh R. |
  3. Mochalski, Lisa N. |
  4. Li, Xuan |
  5. Camilleri, Julia A. |
  6. Kröll, Jean-Philippe |
  7. Wiersch, Lisa |
  8. Eickhoff, Simon B. |
  9. Weis, Susanne |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-12-09
1000 Erschienen in
1000 Quellenangabe
  • 227(2):425-440
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00429-021-02418-1 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844166/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Hemispheric asymmetries, i.e., differences between the two halves of the brain, have extensively been studied with respect to both structure and function. Commonly employed pairwise comparisons between left and right are suitable for finding differences between the hemispheres, but they come with several caveats when assessing multiple asymmetries. What is more, they are not designed for identifying the characterizing features of each hemisphere. Here, we present a novel datadriven framework-based on machine learning-based classification-for identifying the characterizing features that underlie hemispheric differences. Using voxel-based morphometry data from two different samples (n = 226, n = 216), we separated the hemispheres along the midline and used two different pipelines: First, for investigating global differences, we embedded the hemispheres into a two-dimensional space and applied a classifier to assess if the hemispheres are distinguishable in their low-dimensional representation. Second, to investigate which voxels show systematic hemispheric differences, we employed two classification approaches promoting feature selection in high dimensions. The two hemispheres were accurately classifiable in both their low-dimensional (accuracies: dataset 1 = 0.838; dataset 2 = 0.850) and high-dimensional (accuracies: dataset 1 = 0.966; dataset 2 = 0.959) representations. In low dimensions, classification of the right hemisphere showed higher precision (dataset 1 = 0.862; dataset 2 = 0.894) compared to the left hemisphere (dataset 1 = 0.818; dataset 2 = 0.816). A feature selection algorithm in the high-dimensional analysis identified voxels that most contribute to accurate classification. In addition, the map of contributing voxels showed a better overlap with moderate to highly lateralized voxels, whereas conventional t test with threshold-free cluster enhancement best resembled the LQ map at lower thresholds. Both the low and high-dimensional classifiers were capable of identifying the hemispheres in subsamples of the datasets, such as males, females, right-handed, or non-right-handed participants. Our study indicates that hemisphere classification is capable of identifying the hemisphere in their low- and high-dimensional representation as well as delineating brain asymmetries. The concept of hemisphere classifiability thus allows a change in perspective, from asking what differs between the hemispheres towards focusing on the features needed to identify the left and right hemispheres. Taking this perspective on hemispheric differences may contribute to our understanding of what makes each hemisphere special.
1000 Sacherschließung
lokal Female [MeSH]
lokal Volumetry
lokal Brain/diagnostic imaging [MeSH]
lokal Machine learning
lokal Functional Laterality [MeSH]
lokal Humans [MeSH]
lokal Functional laterality
lokal Brain asymmetry
lokal Original Article
lokal Magnetic Resonance Imaging [MeSH]
lokal Neuroimaging
lokal Male [MeSH]
lokal Brain Mapping [MeSH]
lokal Hand [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RnJpZWRyaWNoLCBQYXRyaWNr|https://frl.publisso.de/adhoc/uri/UGF0aWwsIEthdXN0dWJoIFIu|https://frl.publisso.de/adhoc/uri/TW9jaGFsc2tpLCBMaXNhIE4u|https://frl.publisso.de/adhoc/uri/TGksIFh1YW4=|https://frl.publisso.de/adhoc/uri/Q2FtaWxsZXJpLCBKdWxpYSBBLg==|https://frl.publisso.de/adhoc/uri/S3LDtmxsLCBKZWFuLVBoaWxpcHBl|https://frl.publisso.de/adhoc/uri/V2llcnNjaCwgTGlzYQ==|https://frl.publisso.de/adhoc/uri/RWlja2hvZmYsIFNpbW9uIEIu|https://frl.publisso.de/adhoc/uri/V2VpcywgU3VzYW5uZQ==
1000 Hinweis
  • DeepGreen-ID: 80639e6f3a7b4f2fa9149a0340ddae0e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6449994.rdf
1000 Erstellt am 2023-05-09T10:51:35.812+0200
1000 Erstellt von 322
1000 beschreibt frl:6449994
1000 Zuletzt bearbeitet 2023-10-21T02:33:34.205+0200
1000 Objekt bearb. Sat Oct 21 02:33:34 CEST 2023
1000 Vgl. frl:6449994
1000 Oai Id
  1. oai:frl.publisso.de:frl:6449994 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source