Download
s00393-021-01099-9.pdf 485,02KB
WeightNameValue
1000 Titel
  • Identifikation rheumatologischer Gesundheits-Apps im Apple App Store mit der Methode der „semiautomatischen retrospektiven App Store-Analyse“
1000 Titelzusatz
  • Identification of rheumatological health apps in the Apple app store applying the “semiautomatic retrospective app store analysis” method
1000 Autor/in
  1. Richter, Jutta G. |
  2. Chehab, G. |
  3. Kiltz, U. |
  4. Becker, A. |
  5. von Jan, U. |
  6. Albrecht, U.-V. |
  7. Schneider, M. |
  8. Specker, C. |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-10-11
1000 Erschienen in
1000 Quellenangabe
  • 80(10):943-952
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00393-021-01099-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651575/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!The Apple and Google app stores offer a wide range of health apps. It is still a challenge to find valuable and qualified apps.!##!Objective!#!Can German language apps be identified using the 'semiautomated retrospective app store analysis' (SARASA) method for the field of rheumatology?!##!Material and method!#!The SARASA is a semiautomated method to select and characterize apps listed in the app store. After the first application in February 2018 SARASA was applied again to the Apple app store in February 2020.!##!Results!#!In February 2018 it was possible to acquire metadata for 103,046 apps and in February 2020 data for 94,735 apps that were listed in the category 'health and fitness' or 'medicine' in Apple's app store frontend for Germany. After applying the search terms 59 apps with a German language app description were identified for the field of rheumatology in 2018 and 53 apps in 2020. For these, more detailed manual reviews seem worthwhile. In 2018, the apps found were more likely to address patients than physicians and this was more balanced in 2020. In addition, it became apparent that for certain diseases there was no app developer activity. The percentage breakdown of matches by search term revealed substantial fluctuations in the app market when comparing 2018 to 2020.!##!Discussion!#!The SARASA method provides a useful tool to identify apps from app stores that meet predefined, formal criteria. Subsequent manual checks of the quality of the contents are still necessary. Further development of the SARASA method and consensus and standardization of quality criteria are worthwhile. Quality criteria should be considered for offers of mobile health apps in app stores.
1000 Sacherschließung
lokal Quality criteria
lokal Telemedicine [MeSH]
lokal Digitale Rheumatologie
lokal Rheumatic Diseases/diagnosis [MeSH]
lokal Humans [MeSH]
lokal Gütesiegel
lokal Delivery of Health Care [MeSH]
lokal Digital health applications
lokal Retrospective Studies [MeSH]
lokal eHealth
lokal Qualitätskriterien
lokal Rheumatic Diseases/therapy [MeSH]
lokal Originalien
lokal Quality seals
lokal Digital rheumatology
lokal Digitale Gesundheitsanwendungen
lokal ehealth
lokal Mobile Applications [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8194-3243|https://frl.publisso.de/adhoc/uri/Q2hlaGFiLCBHLg==|https://frl.publisso.de/adhoc/uri/S2lsdHosIFUu|https://frl.publisso.de/adhoc/uri/QmVja2VyLCBBLg==|https://frl.publisso.de/adhoc/uri/dm9uIEphbiwgVS4=|https://frl.publisso.de/adhoc/uri/QWxicmVjaHQsIFUuLVYu|https://frl.publisso.de/adhoc/uri/U2NobmVpZGVyLCBNLg==|https://frl.publisso.de/adhoc/uri/U3BlY2tlciwgQy4=
1000 Hinweis
  • DeepGreen-ID: 46077d47c0ed4c48be66b3c8ce7961cd ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6450777.rdf
1000 Erstellt am 2023-05-11T11:00:21.812+0200
1000 Erstellt von 322
1000 beschreibt frl:6450777
1000 Zuletzt bearbeitet 2023-10-21T04:02:33.742+0200
1000 Objekt bearb. Sat Oct 21 04:02:33 CEST 2023
1000 Vgl. frl:6450777
1000 Oai Id
  1. oai:frl.publisso.de:frl:6450777 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source