Download
s00381-021-05112-z.pdf 760,26KB
WeightNameValue
1000 Titel
  • Application of clinical prediction modeling in pediatric neurosurgery: a case study
1000 Autor/in
  1. Mijderwijk, Hendrik-Jan |
  2. Beez, Thomas |
  3. Hänggi, Daniel |
  4. Nieboer, Daan |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-03-30
1000 Erschienen in
1000 Quellenangabe
  • 37(5):1495-1504
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00381-021-05112-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084798/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • There has been an increasing interest in articles reporting on clinical prediction models in pediatric neurosurgery. Clinical prediction models are mathematical equations that combine patient-related risk factors for the estimation of an individual's risk of an outcome. If used sensibly, these evidence-based tools may help pediatric neurosurgeons in medical decision-making processes. Furthermore, they may help to communicate anticipated future events of diseases to children and their parents and facilitate shared decision-making accordingly. A basic understanding of this methodology is incumbent when developing or applying a prediction model. This paper addresses this methodology tailored to pediatric neurosurgery. For illustration, we use original pediatric data from our institution to illustrate this methodology with a case study. The developed model is however not externally validated, and clinical impact has not been assessed; therefore, the model cannot be recommended for clinical use in its current form.
1000 Sacherschließung
lokal Clinical Decision-Making [MeSH]
lokal Neurosurgeons [MeSH]
lokal Clinical prediction modeling
lokal Forecasting [MeSH]
lokal Humans [MeSH]
lokal Risk assessment
lokal Pediatric neurosurgery
lokal Focus Session
lokal Child [MeSH]
lokal Neurosurgical Procedures [MeSH]
lokal Neurosurgery [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-9516-8257|https://frl.publisso.de/adhoc/uri/QmVleiwgVGhvbWFz|https://frl.publisso.de/adhoc/uri/SMOkbmdnaSwgRGFuaWVs|https://frl.publisso.de/adhoc/uri/TmllYm9lciwgRGFhbg==
1000 Hinweis
  • DeepGreen-ID: fd4646f00cf344ba8e2ed0f086ce0a64 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6451079.rdf
1000 Erstellt am 2023-05-11T12:05:50.315+0200
1000 Erstellt von 322
1000 beschreibt frl:6451079
1000 Zuletzt bearbeitet 2023-10-21T04:15:43.895+0200
1000 Objekt bearb. Sat Oct 21 04:15:43 CEST 2023
1000 Vgl. frl:6451079
1000 Oai Id
  1. oai:frl.publisso.de:frl:6451079 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source