Download
s00330-021-08419-2.pdf 1,53MB
WeightNameValue
1000 Titel
  • Feasibility of artificial intelligence–supported assessment of bone marrow infiltration using dual-energy computed tomography in patients with evidence of monoclonal protein — a retrospective observational study
1000 Autor/in
  1. Fervers, Philipp |
  2. Fervers, Florian |
  3. Kottlors, Jonathan |
  4. Lohneis, Philipp |
  5. Pollman-Schweckhorst, Philip |
  6. Zaytoun, Hasan |
  7. Rinneburger, Miriam |
  8. Maintz, David |
  9. Große Hokamp, Nils |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-12-18
1000 Erschienen in
1000 Quellenangabe
  • 32(5):2901-2911
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-021-08419-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038860/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Objectives!#!To demonstrate the feasibility of an automated, non-invasive approach to estimate bone marrow (BM) infiltration of multiple myeloma (MM) by dual-energy computed tomography (DECT) after virtual non-calcium (VNCa) post-processing.!##!Methods!#!Individuals with MM and monoclonal gammopathy of unknown significance (MGUS) with concurrent DECT and BM biopsy between May 2018 and July 2020 were included in this retrospective observational study. Two pathologists and three radiologists reported BM infiltration and presence of osteolytic bone lesions, respectively. Bone mineral density (BMD) was quantified CT-based by a CE-certified software. Automated spine segmentation was implemented by a pre-trained convolutional neural network. The non-fatty portion of BM was defined as voxels > 0 HU in VNCa. For statistical assessment, multivariate regression and receiver operating characteristic (ROC) were conducted.!##!Results!#!Thirty-five patients (mean age 65 ± 12 years; 18 female) were evaluated. The non-fatty portion of BM significantly predicted BM infiltration after adjusting for the covariable BMD (p = 0.007, r = 0.46). A non-fatty portion of BM > 0.93% could anticipate osteolytic lesions and the clinical diagnosis of MM with an area under the ROC curve of 0.70 [0.49-0.90] and 0.71 [0.54-0.89], respectively. Our approach identified MM-patients without osteolytic lesions on conventional CT with a sensitivity and specificity of 0.63 and 0.71, respectively.!##!Conclusions!#!Automated, AI-supported attenuation assessment of the spine in DECT VNCa is feasible to predict BM infiltration in MM. Further, the proposed method might allow for pre-selecting patients with higher pre-test probability of osteolytic bone lesions and support the clinical diagnosis of MM without pathognomonic lesions on conventional CT.!##!Key points!#!• The retrospective study provides an automated approach for quantification of the non-fatty portion of bone marrow, based on AI-supported spine segmentation and virtual non-calcium dual-energy CT data. • An increasing non-fatty portion of bone marrow is associated with a higher infiltration determined by invasive biopsy after adjusting for bone mineral density as a control variable (p = 0.007, r = 0.46). • The non-fatty portion of bone marrow might support the clinical diagnosis of multiple myeloma when conventional CT images are negative (sensitivity 0.63, specificity 0.71).
1000 Sacherschließung
lokal Bone Marrow/diagnostic imaging [MeSH]
lokal Female [MeSH]
lokal Multiple myeloma
lokal Multiple Myeloma/pathology [MeSH]
lokal Aged [MeSH]
lokal Humans [MeSH]
lokal Retrospective Studies [MeSH]
lokal Middle Aged [MeSH]
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Artificial Intelligence [MeSH]
lokal Bone marrow
lokal Feasibility Studies [MeSH]
lokal Monoclonal gammopathy of undetermined significance
lokal Sensitivity and Specificity [MeSH]
lokal Male [MeSH]
lokal Multiple Myeloma/diagnostic imaging [MeSH]
lokal Neural networks, computer
lokal Bone Marrow/pathology [MeSH]
lokal Magnetic Resonance Imaging/methods [MeSH]
lokal Tomography, X-ray computed
lokal Calcium [MeSH]
lokal Computed Tomography
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-3663-3486|https://frl.publisso.de/adhoc/uri/RmVydmVycywgRmxvcmlhbg==|https://frl.publisso.de/adhoc/uri/S290dGxvcnMsIEpvbmF0aGFu|https://frl.publisso.de/adhoc/uri/TG9obmVpcywgUGhpbGlwcA==|https://frl.publisso.de/adhoc/uri/UG9sbG1hbi1TY2h3ZWNraG9yc3QsIFBoaWxpcA==|https://frl.publisso.de/adhoc/uri/WmF5dG91biwgSGFzYW4=|https://frl.publisso.de/adhoc/uri/UmlubmVidXJnZXIsIE1pcmlhbQ==|https://frl.publisso.de/adhoc/uri/TWFpbnR6LCBEYXZpZA==|https://frl.publisso.de/adhoc/uri/R3Jvw59lIEhva2FtcCwgTmlscw==
1000 Hinweis
  • DeepGreen-ID: cbbbb5f4904a402294307884216e5138 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6451149.rdf
1000 Erstellt am 2023-05-11T12:22:23.665+0200
1000 Erstellt von 322
1000 beschreibt frl:6451149
1000 Zuletzt bearbeitet 2023-10-21T04:23:32.472+0200
1000 Objekt bearb. Sat Oct 21 04:23:32 CEST 2023
1000 Vgl. frl:6451149
1000 Oai Id
  1. oai:frl.publisso.de:frl:6451149 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source