Download
s00330-021-08352-4.pdf 1,40MB
WeightNameValue
1000 Titel
  • Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients
1000 Autor/in
  1. Schmitt, N. |
  2. Mokli, Y. |
  3. Weyland, C. S. |
  4. Gerry, S. |
  5. Herweh, C. |
  6. Ringleb, P. A. |
  7. Nagel, S. |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-11-13
1000 Erschienen in
1000 Quellenangabe
  • 32(4):2246-2254
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-021-08352-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921016/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Objectives!#!Artif icial intelligence (AI)-based image analysis is increasingly applied in the acute stroke field. Its implementation for the detection and quantification of hemorrhage suspect hyperdensities in non-contrast-enhanced head CT (NCCT) scans may facilitate clinical decision-making and accelerate stroke management.!##!Methods!#!NCCTs of 160 patients with suspected acute stroke were analyzed regarding the presence or absence of acute intracranial hemorrhages (ICH) using a novel AI-based algorithm. Read was performed by two blinded neuroradiology residents (R1 and R2). Ground truth was established by an expert neuroradiologist. Specificity, sensitivity, and area under the curve were calculated for ICH and intraparenchymal hemorrhage (IPH) detection. IPH-volumes were segmented and quantified automatically by the algorithm and semi-automatically. Intraclass correlation coefficient (ICC) and Dice coefficient (DC) were calculated.!##!Results!#!In total, 79 of 160 patients showed acute ICH, while 47 had IPH. Sensitivity and specificity for ICH detection were 0.91 and 0.89 for the algorithm; 0.99 and 0.98 for R1; and 1.00 and 0.98 for R2. Sensitivity and specificity for IPH detection were 0.98 and 0.89 for the algorithm; 0.83 and 0.99 for R1; and 0.91 and 0.99 for R2. Interreader reliability for ICH and IPH detection showed strong agreements for the algorithm (0.80 and 0.84), R1 (0.96 and 0.84), and R2 (0.98 and 0.92), respectively. ICC indicated an excellent (0.98) agreement between the algorithm and the reference standard of the IPH-volumes. The mean DC was 0.82.!##!Conclusion!#!The AI-based algorithm reliably assessed the presence or absence of acute ICHs in this dataset and quantified IPH volumes precisely.!##!Key points!#!• Artificial intelligence (AI) is able to detect hyperdense volumes on brain CTs reliably. • Sensitivity and specificity are highest for the detection of intraparenchymal hemorrhages. • Interreader reliability for hemorrhage detection shows strong agreement for AI and human readers.
1000 Sacherschließung
lokal Blood
lokal CT
lokal Reproducibility of Results [MeSH]
lokal Imaging Informatics and Artificial Intelligence
lokal Humans [MeSH]
lokal Acute stroke
lokal Stroke/diagnostic imaging [MeSH]
lokal Artificial intelligence
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Hyperdense volume
lokal Intracranial Hemorrhages/diagnostic imaging [MeSH]
lokal Artificial Intelligence [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2NobWl0dCwgTi4=|https://frl.publisso.de/adhoc/uri/TW9rbGksIFku|https://frl.publisso.de/adhoc/uri/V2V5bGFuZCwgQy4gUy4=|https://frl.publisso.de/adhoc/uri/R2VycnksIFMu|https://frl.publisso.de/adhoc/uri/SGVyd2VoLCBDLg==|https://frl.publisso.de/adhoc/uri/UmluZ2xlYiwgUC4gQS4=|https://frl.publisso.de/adhoc/uri/TmFnZWwsIFMu
1000 Hinweis
  • DeepGreen-ID: c03227b8164b49019e6a6c154a86f7b6 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6451175.rdf
1000 Erstellt am 2023-05-11T12:28:10.061+0200
1000 Erstellt von 322
1000 beschreibt frl:6451175
1000 Zuletzt bearbeitet 2023-10-21T04:26:09.474+0200
1000 Objekt bearb. Sat Oct 21 04:26:09 CEST 2023
1000 Vgl. frl:6451175
1000 Oai Id
  1. oai:frl.publisso.de:frl:6451175 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source