Download
s00330-020-07655-2.pdf 1,90MB
WeightNameValue
1000 Titel
  • Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA
1000 Autor/in
  1. Löffler, Maximilian |
  2. Jacob, Alina |
  3. Scharr, Andreas |
  4. Sollmann, Nico |
  5. Burian, Egon |
  6. El Husseini, Malek |
  7. Sekuboyina, Anjany |
  8. Tetteh, Giles |
  9. Zimmer, Claus |
  10. Gempt, Jens |
  11. Baum, Thomas |
  12. Kirschke, Jan S. |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-01-28
1000 Erschienen in
1000 Quellenangabe
  • 31(8):6069-6077
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-020-07655-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270840/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Objectives!#!To compare spinal bone measures derived from automatic and manual assessment in routine CT with dual energy X-ray absorptiometry (DXA) in their association with prevalent osteoporotic vertebral fractures using our fully automated framework ( https://anduin.bonescreen.de ) to assess various bone measures in clinical CT.!##!Methods!#!We included 192 patients (141 women, 51 men; age 70.2 ± 9.7 years) who had lumbar DXA and CT available (within 1 year). Automatic assessment of spinal bone measures in CT included segmentation of vertebrae using a convolutional neural network (CNN), reduction to the vertebral body, and extraction of bone mineral content (BMC), trabecular and integral volumetric bone mineral density (vBMD), and CT-based areal BMD (aBMD) using asynchronous calibration. Moreover, trabecular bone was manually sampled (manual vBMD).!##!Results!#!A total of 148 patients (77%) had vertebral fractures and significantly lower values in all bone measures compared to patients without fractures (p ≤ 0.001). Except for BMC, all CT-based measures performed significantly better as predictors for vertebral fractures compared to DXA (e.g., AUC = 0.885 for trabecular vBMD and AUC = 0.86 for integral vBMD vs. AUC = 0.668 for DXA aBMD, respectively; both p < 0.001). Age- and sex-adjusted associations with fracture status were strongest for manual vBMD (OR = 7.3, [95%] CI 3.8-14.3) followed by automatically assessed trabecular vBMD (OR = 6.9, CI 3.5-13.4) and integral vBMD (OR = 4.3, CI 2.5-7.6). Diagnostic cutoffs of integral vBMD for osteoporosis (< 160 mg/cm!##!Conclusions!#!Fully automatic osteoporosis screening in routine CT of the spine is feasible. CT-based measures can better identify individuals with reduced bone mass who suffered from vertebral fractures than DXA.!##!Key points!#!• Opportunistic osteoporosis screening of spinal bone measures derived from clinical routine CT is feasible in a fully automatic fashion using a deep learning-driven framework ( https://anduin.bonescreen.de ). • Manually sampled volumetric BMD (vBMD) and automatically assessed trabecular and integral vBMD were the best predictors for prevalent vertebral fractures. • Except for bone mineral content, all CT-based bone measures performed significantly better than DXA-based measures. • We introduce diagnostic thresholds of integral vBMD for osteoporosis (< 160 mg/cm
1000 Sacherschließung
lokal Bone Density [MeSH]
lokal Female [MeSH]
lokal Aged [MeSH]
lokal Imaging Informatics and Artificial Intelligence
lokal Spinal Fractures/epidemiology [MeSH]
lokal Humans [MeSH]
lokal Lumbar Vertebrae/injuries [MeSH]
lokal Middle Aged [MeSH]
lokal Osteoporosis
lokal Tomography, X-Ray Computed [MeSH]
lokal Multidetector computed tomography
lokal Osteoporosis/diagnostic imaging [MeSH]
lokal Osteoporosis/epidemiology [MeSH]
lokal Neural networks
lokal Male [MeSH]
lokal Absorptiometry, Photon [MeSH]
lokal Spine
lokal Bone mineral density
lokal Lumbar Vertebrae/diagnostic imaging [MeSH]
lokal Osteoporosis/complications [MeSH]
lokal Spinal Fractures/diagnostic imaging [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-6022-3682|https://frl.publisso.de/adhoc/uri/SmFjb2IsIEFsaW5h|https://frl.publisso.de/adhoc/uri/U2NoYXJyLCBBbmRyZWFz|https://frl.publisso.de/adhoc/uri/U29sbG1hbm4sIE5pY28=|https://frl.publisso.de/adhoc/uri/QnVyaWFuLCBFZ29u|https://frl.publisso.de/adhoc/uri/RWwgSHVzc2VpbmksIE1hbGVr|https://frl.publisso.de/adhoc/uri/U2VrdWJveWluYSwgQW5qYW55|https://frl.publisso.de/adhoc/uri/VGV0dGVoLCBHaWxlcw==|https://frl.publisso.de/adhoc/uri/WmltbWVyLCBDbGF1cw==|https://frl.publisso.de/adhoc/uri/R2VtcHQsIEplbnM=|https://frl.publisso.de/adhoc/uri/QmF1bSwgVGhvbWFz|https://frl.publisso.de/adhoc/uri/S2lyc2Noa2UsIEphbiBTLg==
1000 Hinweis
  • DeepGreen-ID: 4287bbf6f62447dd82a5081ff4269200 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6451267.rdf
1000 Erstellt am 2023-05-11T12:48:56.791+0200
1000 Erstellt von 322
1000 beschreibt frl:6451267
1000 Zuletzt bearbeitet 2023-10-21T04:37:06.335+0200
1000 Objekt bearb. Sat Oct 21 04:37:06 CEST 2023
1000 Vgl. frl:6451267
1000 Oai Id
  1. oai:frl.publisso.de:frl:6451267 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source