Download
s00330-021-07714-2.pdf 3,39MB
WeightNameValue
1000 Titel
  • Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network
1000 Autor/in
  1. Haubold, Johannes |
  2. Hosch, René |
  3. Umutlu, Lale |
  4. Wetter, Axel |
  5. Haubold, Patrizia |
  6. Radbruch, Alexander |
  7. Forsting, Michael |
  8. Nensa, Felix |
  9. Koitka, Sven |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-02-25
1000 Erschienen in
1000 Quellenangabe
  • 31(8):6087-6095
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-021-07714-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270814/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Objectives!#!To reduce the dose of intravenous iodine-based contrast media (ICM) in CT through virtual contrast-enhanced images using generative adversarial networks.!##!Methods!#!Dual-energy CTs in the arterial phase of 85 patients were randomly split into an 80/20 train/test collective. Four different generative adversarial networks (GANs) based on image pairs, which comprised one image with virtually reduced ICM and the original full ICM CT slice, were trained, testing two input formats (2D and 2.5D) and two reduced ICM dose levels (-50% and -80%). The amount of intravenous ICM was reduced by creating virtual non-contrast series using dual-energy and adding the corresponding percentage of the iodine map. The evaluation was based on different scores (L1 loss, SSIM, PSNR, FID), which evaluate the image quality and similarity. Additionally, a visual Turing test (VTT) with three radiologists was used to assess the similarity and pathological consistency.!##!Results!#!The -80% models reach an SSIM of > 98%, PSNR of > 48, L1 of between 7.5 and 8, and an FID of between 1.6 and 1.7. In comparison, the -50% models reach a SSIM of > 99%, PSNR of > 51, L1 of between 6.0 and 6.1, and an FID between 0.8 and 0.95. For the crucial question of pathological consistency, only the 50% ICM reduction networks achieved 100% consistency, which is required for clinical use.!##!Conclusions!#!The required amount of ICM for CT can be reduced by 50% while maintaining image quality and diagnostic accuracy using GANs. Further phantom studies and animal experiments are required to confirm these initial results.!##!Key points!#!• The amount of contrast media required for CT can be reduced by 50% using generative adversarial networks. • Not only the image quality but especially the pathological consistency must be evaluated to assess safety. • A too pronounced contrast media reduction could influence the pathological consistency in our collective at 80%.
1000 Sacherschließung
lokal Tomography, X-Ray Computed [MeSH]
lokal Deep Learning [MeSH]
lokal Imaging Informatics and Artificial Intelligence
lokal Signal-To-Noise Ratio [MeSH]
lokal Drug Tapering [MeSH]
lokal Humans [MeSH]
lokal Image Processing, Computer-Assisted [MeSH]
lokal Tomography, spiral computed
lokal Animals [MeSH]
lokal Contrast Media [MeSH]
lokal Contrast media
lokal Image processing, computer-assisted
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-4843-5911|https://frl.publisso.de/adhoc/uri/SG9zY2gsIFJlbsOp|https://frl.publisso.de/adhoc/uri/VW11dGx1LCBMYWxl|https://frl.publisso.de/adhoc/uri/V2V0dGVyLCBBeGVs|https://frl.publisso.de/adhoc/uri/SGF1Ym9sZCwgUGF0cml6aWE=|https://frl.publisso.de/adhoc/uri/UmFkYnJ1Y2gsIEFsZXhhbmRlcg==|https://frl.publisso.de/adhoc/uri/Rm9yc3RpbmcsIE1pY2hhZWw=|https://frl.publisso.de/adhoc/uri/TmVuc2EsIEZlbGl4|https://frl.publisso.de/adhoc/uri/S29pdGthLCBTdmVu
1000 Hinweis
  • DeepGreen-ID: 8de8e60e9f4447e29ed13782efdce9ef ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6451273.rdf
1000 Erstellt am 2023-05-11T12:50:19.952+0200
1000 Erstellt von 322
1000 beschreibt frl:6451273
1000 Zuletzt bearbeitet 2023-10-21T04:37:43.055+0200
1000 Objekt bearb. Sat Oct 21 04:37:43 CEST 2023
1000 Vgl. frl:6451273
1000 Oai Id
  1. oai:frl.publisso.de:frl:6451273 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source