Download
s00259-021-05270-x.pdf 1,23MB
WeightNameValue
1000 Titel
  • Just another “Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer
1000 Autor/in
  1. Weber, Manuel |
  2. Kersting, David |
  3. Umutlu, Lale |
  4. Schäfers, Michael |
  5. Rischpler, Christoph |
  6. Fendler, Wolfgang P. |
  7. Buvat, Irène |
  8. Herrmann, Ken |
  9. Seifert, Robert |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-03-05
1000 Erschienen in
1000 Quellenangabe
  • 48(10):3141-3150
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00259-021-05270-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426242/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Manual quantification of the metabolic tumor volume (MTV) from whole-body !##!Methods!#!Fifty consecutive breast cancer patients that underwent !##!Results!#!If PERCIST measurable foci were regarded, the neural network displayed high per patient sensitivity and specificity in detecting suspicious !##!Conclusion!#!Although trained on lymphoma and lung cancer, PARS showed good accuracy in the detection of PERCIST measurable lesions. Therefore, the neural network seems not prone to the clever Hans effect. However, the network has poor accuracy if all manually segmented lesions were used as reference standard. Both the whole body and organ-wise MTV were significant prognosticators of overall survival in advanced breast cancer.
1000 Sacherschließung
lokal Breast Neoplasms/diagnostic imaging [MeSH]
lokal Female [MeSH]
lokal Humans [MeSH]
lokal Breast cancer
lokal Positron Emission Tomography Computed Tomography [MeSH]
lokal Radiopharmaceuticals [MeSH]
lokal Retrospective Studies [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Fluorodeoxyglucose F18 [MeSH]
lokal Original Article
lokal Tomography, X-Ray Computed [MeSH]
lokal Metabolic tumor volume
lokal Neural network
lokal Prognosis [MeSH]
lokal Advanced Image Analyses (Radiomics and Artificial Intelligence)
lokal Tumor Burden [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/V2ViZXIsIE1hbnVlbA==|https://frl.publisso.de/adhoc/uri/S2Vyc3RpbmcsIERhdmlk|https://frl.publisso.de/adhoc/uri/VW11dGx1LCBMYWxl|https://frl.publisso.de/adhoc/uri/U2Now6RmZXJzLCBNaWNoYWVs|https://frl.publisso.de/adhoc/uri/UmlzY2hwbGVyLCBDaHJpc3RvcGg=|https://frl.publisso.de/adhoc/uri/RmVuZGxlciwgV29sZmdhbmcgUC4=|https://frl.publisso.de/adhoc/uri/QnV2YXQsIElyw6huZQ==|https://frl.publisso.de/adhoc/uri/SGVycm1hbm4sIEtlbg==|https://frl.publisso.de/adhoc/uri/U2VpZmVydCwgUm9iZXJ0
1000 Hinweis
  • DeepGreen-ID: 657ae883ba4b4a4a990c445924f5adc1 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6451541.rdf
1000 Erstellt am 2023-05-11T13:53:59.490+0200
1000 Erstellt von 322
1000 beschreibt frl:6451541
1000 Zuletzt bearbeitet 2023-10-24T07:43:56.272+0200
1000 Objekt bearb. Tue Oct 24 07:43:56 CEST 2023
1000 Vgl. frl:6451541
1000 Oai Id
  1. oai:frl.publisso.de:frl:6451541 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source