Download
file.pdf 502,98KB
WeightNameValue
1000 Titel
  • Development of an electronic medical record-based algorithm to identify patients with Stevens-Johnson syndrome and toxic epidermal necrolysis in Japan
1000 Autor/in
  1. Fukasawa, Toshiki |
  2. Takahashi, Hayato |
  3. Kameyama, Norin |
  4. Fukuda, Risa |
  5. Furuhata, Shihori |
  6. Tanemura, Nanae |
  7. Amagai, Masayuki |
  8. Urushihara, Hisashi |
1000 Erscheinungsjahr 2019
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2019-08-13
1000 Erschienen in
1000 Quellenangabe
  • 14(8):e0221130
1000 Copyrightjahr
  • 2019
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0221130 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692049/ |
1000 Ergänzendes Material
  • https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221130#sec013 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), severe drug reactions, are often misdiagnosed due to their rarity and lack of information on differential diagnosis. The objective of the study was to develop an electronic medical record (EMR)-based algorithm to identify patients with SJS/TEN for future application in database studies. From the EMRs of a university hospital, two dermatologists identified all 13 patients with SJS/TEN seen at the Department of Dermatology as the case group. Another 1472 patients who visited the Department of Dermatology were identified using the ICD-10 codes for diseases requiring differentiation from SJS/TEN. One hundred of these patients were then randomly sampled as controls. Based on clinical guidelines for SJS/TEN and the experience of the dermatologists, we tested 128 algorithms based on the use of ICD-10 codes, clinical courses for SJS/TEN, medical encounters for mucocutaneous lesions from SJS/TEN, and items to exclude paraneoplastic pemphigus. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic odds ratio (DOR) of each algorithm were calculated, and the optimal algorithm was defined as that with high PPV and maximal sensitivity and specificity. One algorithm, consisting of a combination of clinical course for SJS/TEN, medical encounters for mucocutaneous lesions from SJS/TEN, and items to exclude paraneoplastic pemphigus, but not ICD-10 codes, showed a sensitivity of 76.9%, specificity of 99.0%, PPV of 40.5%, NPV of 99.8%, and DOR of 330.00. We developed a potentially optimized algorithm for identifying SJS/TEN based on clinical practice records. The almost perfect specificity of this algorithm will prevent bias in estimating relative risks of SJS/TEN in database studies. Considering the small sample size, this algorithm should be further tested in different settings.
1000 Sacherschließung
lokal Biospy
lokal Algorithms
lokal Japan
lokal Antibody therapy
lokal Electronic medical records
lokal Lesions
lokal Dermatology
lokal Diagnostic medicine
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. http://orcid.org/0000-0001-7147-0737|https://frl.publisso.de/adhoc/uri/VGFrYWhhc2hpLCBIYXlhdG8=|https://frl.publisso.de/adhoc/uri/S2FtZXlhbWEsIE5vcmlu|https://frl.publisso.de/adhoc/uri/RnVrdWRhLCBSaXNh|https://frl.publisso.de/adhoc/uri/RnVydWhhdGEsIFNoaWhvcmk=|https://frl.publisso.de/adhoc/uri/VGFuZW11cmEsIE5hbmFl|https://frl.publisso.de/adhoc/uri/QW1hZ2FpLCBNYXNheXVraQ==|https://frl.publisso.de/adhoc/uri/VXJ1c2hpaGFyYSwgSGlzYXNoaQ==
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Ministry of Health, Labour and Welfare |
  2. Keio University |
1000 Fördernummer
  1. H29-Nanchitou(Zatsu)-Ippan028
  2. -
1000 Förderprogramm
  1. -
  2. Division of Drug Development and Regulatory Science
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Ministry of Health, Labour and Welfare |
    1000 Förderprogramm -
    1000 Fördernummer H29-Nanchitou(Zatsu)-Ippan028
  2. 1000 joinedFunding-child
    1000 Förderer Keio University |
    1000 Förderprogramm Division of Drug Development and Regulatory Science
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6453138.rdf
1000 Erstellt am 2023-07-13T13:24:07.543+0200
1000 Erstellt von 337
1000 beschreibt frl:6453138
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-08-07T07:47:51.323+0200
1000 Objekt bearb. Mon Aug 07 07:47:22 CEST 2023
1000 Vgl. frl:6453138
1000 Oai Id
  1. oai:frl.publisso.de:frl:6453138 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source