Download
Maria Antony-Sci Rep-2023.pdf 4,21MB
WeightNameValue
1000 Titel
  • FDM data driven U-Net as a 2D Laplace PINN solver
1000 Autor/in
  1. Maria Antony, Anto Nivin |
  2. Narisetti, Narendra |
  3. Gladilin, Evgeny |
1000 Erscheinungsjahr 2023
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-06-05
1000 Erschienen in
1000 Quellenangabe
  • 13(1):9116
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://dx.doi.org/10.1038/s41598-023-35531-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241951/ |
1000 Ergänzendes Material
  • https://dx.doi.org/10.1038/s41598-023-35531-8 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Efficient solution of partial differential equations (PDEs) of physical laws is of interest for manifold applications in computer science and image analysis. However, conventional domain discretization techniques for numerical solving PDEs such as Finite Difference (FDM), Finite Element (FEM) methods are unsuitable for real-time applications and are also quite laborious in adaptation to new applications, especially for non-experts in numerical mathematics and computational modeling. More recently, alternative approaches to solving PDEs using the so-called Physically Informed Neural Networks (PINNs) received increasing attention because of their straightforward application to new data and potentially more efficient performance. In this work, we present a novel data-driven approach to solve 2D Laplace PDE with arbitrary boundary conditions using deep learning models trained on a large set of reference FDM solutions. Our experimental results show that both forward and inverse 2D Laplace problems can efficiently be solved using the proposed PINN approach with nearly real-time performance and average accuracy of 94% for different types of boundary value problems compared to FDM. In summary, our deep learning based PINN PDE solver provides an efficient tool with various applications in image analysis and computational simulation of image-based physical boundary value problems.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWFyaWEgQW50b255LCBBbnRvIE5pdmlu|https://orcid.org/0000-0001-7584-9461|https://orcid.org/0000-0002-6153-727X
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
1000 Fördernummer
  1. 031B0770A
1000 Förderprogramm
  1. AVATARS
1000 Dateien
  1. FDM data driven U-Net as a 2D Laplace PINN solver
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm AVATARS
    1000 Fördernummer 031B0770A
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6462169.rdf
1000 Erstellt am 2023-10-25T13:33:28.253+0200
1000 Erstellt von 325
1000 beschreibt frl:6462169
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-12-05T12:06:24.282+0100
1000 Objekt bearb. Tue Dec 05 12:06:14 CET 2023
1000 Vgl. frl:6462169
1000 Oai Id
  1. oai:frl.publisso.de:frl:6462169 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source