Download
Narisetti-Plant Phenomics-2023.pdf 2,21MB
WeightNameValue
1000 Titel
  • Awn image analysis and phenotyping using BarbNet
1000 Autor/in
  1. Narisetti, Narendra |
  2. Awais, Muhammad |
  3. Khan, Muhammad |
  4. Stolzenburg, Frieder |
  5. Stein, Nils |
  6. Gladilin, Evgeny |
1000 Erscheinungsjahr 2023
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-08-04
1000 Erschienen in
1000 Quellenangabe
  • 5:0081
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://dx.doi.org/10.34133/plantphenomics.0081 |
1000 Ergänzendes Material
  • https://spj.science.org/doi/10.34133/plantphenomics.0081#supplementary-materials |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Consideration of the properties of awns is important for the phenotypic description of grain crops. Awns have a number of important functions in grasses, including assimilation, mechanical protection, and seed dispersal and burial. An important feature of the awn is the presence or absence of barbs—tiny hook-like single-celled trichomes on the outer awn surface that can be visualized using microscopic imaging. There are, however, no suitable software tools for the automated analysis of these small, semi-transparent structures in a high-throughput manner. Furthermore, automated analysis of barbs using conventional methods of pattern detection and segmentation is hampered by high variability of their optical appearance including size, shape, and surface density. In this work, we present a software tool for automated detection and phenotyping of barbs in microscopic images of awns, which is based on a dedicated deep learning model (BarbNet). Our experimental results show that BarbNet is capable of detecting barb structures in different awn phenotypes with an average accuracy of 90%. Furthermore, we demonstrate that phenotypic traits derived from BarbNet-segmented images enable a quite robust categorization of 4 contrasting awn phenotypes with an accuracy of >85%. Based on the promising results of this work, we see that the proposed model has potential applications in the automation of barley awns sorting for plant developmental analysis.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-7584-9461|https://orcid.org/0000-0002-5846-0187|https://frl.publisso.de/adhoc/uri/S2hhbiwgTXVoYW1tYWQ=|https://frl.publisso.de/adhoc/uri/U3RvbHplbmJ1cmcsIEZyaWVkZXI=|https://orcid.org/0000-0003-3011-8731|https://orcid.org/0000-0002-6153-727X
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. STE1102/17-1
  2. 491250510
1000 Förderprogramm
  1. -
  2. Open access funding
1000 Dateien
  1. Awn image analysis and phenotyping using BarbNet
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer STE1102/17-1
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm Open access funding
    1000 Fördernummer 491250510
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6462177.rdf
1000 Erstellt am 2023-10-25T14:20:32.290+0200
1000 Erstellt von 325
1000 beschreibt frl:6462177
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-12-05T12:15:28.029+0100
1000 Objekt bearb. Tue Dec 05 12:15:16 CET 2023
1000 Vgl. frl:6462177
1000 Oai Id
  1. oai:frl.publisso.de:frl:6462177 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source