Download
s12880-021-00650-z.pdf 1,76MB
WeightNameValue
1000 Titel
  • Towards improving edge quality using combinatorial optimization and a novel skeletonize algorithm
1000 Autor/in
  1. Arnold, Marvin |
  2. Speidel, Stefanie |
  3. Hattab, Georges |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-08-05
1000 Erschienen in
1000 Quellenangabe
  • 21(1):119
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12880-021-00650-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340540/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Object detection and image segmentation of regions of interest provide the foundation for numerous pipelines across disciplines. Robust and accurate computer vision methods are needed to properly solve image-based tasks. Multiple algorithms have been developed to solely detect edges in images. Constrained to the problem of creating a thin, one-pixel wide, edge from a predicted object boundary, we require an algorithm that removes pixels while preserving the topology. Thanks to skeletonize algorithms, an object boundary is transformed into an edge; contrasting uncertainty with exact positions.!##!Methods!#!To extract edges from boundaries generated from different algorithms, we present a computational pipeline that relies on: a novel skeletonize algorithm, a non-exhaustive discrete parameter search to find the optimal parameter combination of a specific post-processing pipeline, and an extensive evaluation using three data sets from the medical and natural image domains (kidney boundaries, NYU-Depth V2, BSDS 500). While the skeletonize algorithm was compared to classical topological skeletons, the validity of our post-processing algorithm was evaluated by integrating the original post-processing methods from six different works.!##!Results!#!Using the state of the art metrics, precision and recall based Signed Distance Error (SDE) and the Intersection over Union bounding box (IOU-box), our results indicate that the SDE metric for these edges is improved up to 2.3 times.!##!Conclusions!#!Our work provides guidance for parameter tuning and algorithm selection in the post-processing of predicted object boundaries.
1000 Sacherschließung
lokal Computational optimization
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Post-processing
lokal Algorithms [MeSH]
lokal Edge detection
lokal Surgery, Computer-Assisted [MeSH]
lokal Research
lokal Humans [MeSH]
lokal Diagnostic Imaging/methods [MeSH]
lokal Skeletonize algorithm
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8772-4305|https://frl.publisso.de/adhoc/uri/U3BlaWRlbCwgU3RlZmFuaWU=|https://orcid.org/0000-0003-4168-8254
1000 Hinweis
  • DeepGreen-ID: 96efc3615d854579a54418fac13235b5 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6462669.rdf
1000 Erstellt am 2023-11-15T13:50:29.941+0100
1000 Erstellt von 322
1000 beschreibt frl:6462669
1000 Zuletzt bearbeitet 2023-11-30T20:14:56.334+0100
1000 Objekt bearb. Thu Nov 30 20:14:56 CET 2023
1000 Vgl. frl:6462669
1000 Oai Id
  1. oai:frl.publisso.de:frl:6462669 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source