Download
s12880-021-00654-9.pdf 2,20MB
WeightNameValue
1000 Titel
  • Potential of high dimensional radiomic features to assess blood components in intraaortic vessels in non-contrast CT scans
1000 Autor/in
  1. Mahmoudi, Scherwin |
  2. Martin, Simon S. |
  3. Ackermann, Jörg |
  4. Zhdanovich, Yauheniya |
  5. Koch, Ina |
  6. Vogl, Thomas J. |
  7. Albrecht, Moritz H. |
  8. Lenga, Lukas |
  9. Bernatz, Simon |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-08-12
1000 Erschienen in
1000 Quellenangabe
  • 21(1):123
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12880-021-00654-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359593/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!To assess the potential of radiomic features to quantify components of blood in intraaortic vessels to non-invasively predict moderate-to-severe anemia in non-contrast enhanced CT scans.!##!Methods!#!One hundred patients (median age, 69 years; range, 19-94 years) who received CT scans of the thoracolumbar spine and blood-testing for hemoglobin and hematocrit levels ± 24 h between 08/2018 and 11/2019 were retrospectively included. Intraaortic blood was segmented using a spherical volume of interest of 1 cm diameter with consecutive radiomic analysis applying PyRadiomics software. Feature selection was performed applying analysis of correlation and collinearity. The final feature set was obtained to differentiate moderate-to-severe anemia. Random forest machine learning was applied and predictive performance was assessed. A decision-tree was obtained to propose a cut-off value of CT Hounsfield units (HU).!##!Results!#!High correlation with hemoglobin and hematocrit levels was shown for first-order radiomic features (p < 0.001 to p = 0.032). The top 3 features showed high correlation to hemoglobin values (p) and minimal collinearity (r) to the top ranked feature Median (p < 0.001), Energy (p = 0.002, r = 0.387), Minimum (p = 0.032, r = 0.437). Median (p < 0.001) and Minimum (p = 0.003) differed in moderate-to-severe anemia compared to non-anemic state. Median yielded superiority to the combination of Median and Minimum (p(AUC) = 0.015, p(precision) = 0.017, p(accuracy) = 0.612) in the predictive performance employing random forest analysis. A Median HU value ≤ 36.5 indicated moderate-to-severe anemia (accuracy = 0.90, precision = 0.80).!##!Conclusions!#!First-order radiomic features correlate with hemoglobin levels and may be feasible for the prediction of moderate-to-severe anemia. High dimensional radiomic features did not aid augmenting the data in our exemplary use case of intraluminal blood component assessment. Trial registration Retrospectively registered.
1000 Sacherschließung
lokal Blood
lokal Female [MeSH]
lokal Aorta/diagnostic imaging [MeSH]
lokal Aged, 80 and over [MeSH]
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Anemia
lokal Humans [MeSH]
lokal Hemoglobins/analysis [MeSH]
lokal Artificial intelligence
lokal Middle Aged [MeSH]
lokal Radiomics
lokal Tomography, X-Ray Computed [MeSH]
lokal CT
lokal Anemia/diagnosis [MeSH]
lokal Hematocrit [MeSH]
lokal Decision Trees [MeSH]
lokal Male [MeSH]
lokal Research
lokal Young Adult [MeSH]
lokal Image Interpretation, Computer-Assisted/methods [MeSH]
lokal Machine Learning [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWFobW91ZGksIFNjaGVyd2lu|https://frl.publisso.de/adhoc/uri/TWFydGluLCBTaW1vbiBTLg==|https://frl.publisso.de/adhoc/uri/QWNrZXJtYW5uLCBKw7ZyZw==|https://frl.publisso.de/adhoc/uri/WmhkYW5vdmljaCwgWWF1aGVuaXlh|https://frl.publisso.de/adhoc/uri/S29jaCwgSW5h|https://frl.publisso.de/adhoc/uri/Vm9nbCwgVGhvbWFzIEou|https://frl.publisso.de/adhoc/uri/QWxicmVjaHQsIE1vcml0eiBILg==|https://frl.publisso.de/adhoc/uri/TGVuZ2EsIEx1a2Fz|https://frl.publisso.de/adhoc/uri/QmVybmF0eiwgU2ltb24=
1000 Hinweis
  • DeepGreen-ID: 08ea83e7f935476c834c299a2cd9e172 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6462675.rdf
1000 Erstellt am 2023-11-15T13:52:03.216+0100
1000 Erstellt von 322
1000 beschreibt frl:6462675
1000 Zuletzt bearbeitet 2023-11-30T20:15:19.969+0100
1000 Objekt bearb. Thu Nov 30 20:15:19 CET 2023
1000 Vgl. frl:6462675
1000 Oai Id
  1. oai:frl.publisso.de:frl:6462675 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source