Download
s12880-021-00636-x.pdf 4,63MB
WeightNameValue
1000 Titel
  • Lesion probability mapping in MS patients using a regression network on MR fingerprinting
1000 Autor/in
  1. Hermann, Ingo |
  2. Golla, Alena K. |
  3. Martínez-Heras, Eloy |
  4. Schmidt, Ralf |
  5. Solana, Elisabeth |
  6. Llufriu, Sara |
  7. Gass, Achim |
  8. Schad, Lothar R. |
  9. Zöllner, Frank G. |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-08
1000 Erschienen in
1000 Quellenangabe
  • 21(1):107
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12880-021-00636-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265034/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-EPI) in addition to [Formula: see text], [Formula: see text], NAWM, and GM- probability maps.!##!Methods!#!We performed MRF-EPI measurements in 42 patients with multiple sclerosis and 6 healthy volunteers along two sites. A U-net was trained to reconstruct the denoised and distortion corrected [Formula: see text] and [Formula: see text] maps, and to additionally generate NAWM-, GM-, and WM lesion probability maps.!##!Results!#!WM lesions were predicted with a dice coefficient of [Formula: see text] and a lesion detection rate of [Formula: see text] for a threshold of 33%. The network jointly enabled accurate [Formula: see text] and [Formula: see text] times with relative deviations of 5.2% and 5.1% and average dice coefficients of [Formula: see text] and [Formula: see text] for NAWM and GM after binarizing with a threshold of 80%.!##!Conclusion!#!DL is a promising tool for the prediction of lesion probability maps in a fraction of time. These might be of clinical interest for the WM lesion analysis in MS patients.
1000 Sacherschließung
lokal Multiple Sclerosis/diagnostic imaging [MeSH]
lokal Magnetic resonance fingerprinting
lokal Deep Learning [MeSH]
lokal Humans [MeSH]
lokal Lesion prediction
lokal Neural Networks, Computer [MeSH]
lokal Neuroimaging
lokal Technical Advance
lokal White Matter/diagnostic imaging [MeSH]
lokal Echo-Planar Imaging [MeSH]
lokal Brain Mapping [MeSH]
lokal Deep learning reconstruction
lokal Probability [MeSH]
lokal Leukoencephalopathies/diagnostic imaging [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-6379-5299|https://frl.publisso.de/adhoc/uri/R29sbGEsIEFsZW5hIEsu|https://frl.publisso.de/adhoc/uri/TWFydMOtbmV6LUhlcmFzLCBFbG95|https://frl.publisso.de/adhoc/uri/U2NobWlkdCwgUmFsZg==|https://frl.publisso.de/adhoc/uri/U29sYW5hLCBFbGlzYWJldGg=|https://frl.publisso.de/adhoc/uri/TGx1ZnJpdSwgU2FyYQ==|https://frl.publisso.de/adhoc/uri/R2FzcywgQWNoaW0=|https://frl.publisso.de/adhoc/uri/U2NoYWQsIExvdGhhciBSLg==|https://frl.publisso.de/adhoc/uri/WsO2bGxuZXIsIEZyYW5rIEcu
1000 Hinweis
  • DeepGreen-ID: 26e9a892d756448dac5d1e4e4497df28 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6462683.rdf
1000 Erstellt am 2023-11-15T13:55:01.710+0100
1000 Erstellt von 322
1000 beschreibt frl:6462683
1000 Zuletzt bearbeitet 2023-11-30T20:16:10.702+0100
1000 Objekt bearb. Thu Nov 30 20:16:10 CET 2023
1000 Vgl. frl:6462683
1000 Oai Id
  1. oai:frl.publisso.de:frl:6462683 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source