Download
s12880-021-00599-z.pdf 2,96MB
WeightNameValue
1000 Titel
  • Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks
1000 Autor/in
  1. Iuga, Andra-Iza |
  2. Carolus, Heike |
  3. Höink, Anna J. |
  4. Brosch, Tom |
  5. Klinder, Tobias |
  6. Maintz, David |
  7. Persigehl, Thorsten |
  8. Baeßler, Bettina |
  9. Püsken, Michael |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-04-13
1000 Erschienen in
1000 Quellenangabe
  • 21(1):69
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12880-021-00599-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045346/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!In oncology, the correct determination of nodal metastatic disease is essential for patient management, as patient treatment and prognosis are closely linked to the stage of the disease. The aim of the study was to develop a tool for automatic 3D detection and segmentation of lymph nodes (LNs) in computed tomography (CT) scans of the thorax using a fully convolutional neural network based on 3D foveal patches.!##!Methods!#!The training dataset was collected from the Computed Tomography Lymph Nodes Collection of the Cancer Imaging Archive, containing 89 contrast-enhanced CT scans of the thorax. A total number of 4275 LNs was segmented semi-automatically by a radiologist, assessing the entire 3D volume of the LNs. Using this data, a fully convolutional neuronal network based on 3D foveal patches was trained with fourfold cross-validation. Testing was performed on an unseen dataset containing 15 contrast-enhanced CT scans of patients who were referred upon suspicion or for staging of bronchial carcinoma.!##!Results!#!The algorithm achieved a good overall performance with a total detection rate of 76.9% for enlarged LNs during fourfold cross-validation in the training dataset with 10.3 false-positives per volume and of 69.9% in the unseen testing dataset. In the training dataset a better detection rate was observed for enlarged LNs compared to smaller LNs, the detection rate for LNs with a short-axis diameter (SAD) ≥ 20 mm and SAD 5-10 mm being 91.6% and 62.2% (p < 0.001), respectively. Best detection rates were obtained for LNs located in Level 4R (83.6%) and Level 7 (80.4%).!##!Conclusions!#!The proposed 3D deep learning approach achieves an overall good performance in the automatic detection and segmentation of thoracic LNs and shows reasonable generalizability, yielding the potential to facilitate detection during routine clinical work and to enable radiomics research without observer-bias.
1000 Sacherschließung
lokal Carcinoma, Bronchogenic/diagnostic imaging [MeSH]
lokal Aged [MeSH]
lokal Deep Learning [MeSH]
lokal Artificial intelligence
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Thorax [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Male [MeSH]
lokal Staging
lokal Thoracic imaging
lokal Deep learning
lokal Lymph nodes
lokal Mediastinum [MeSH]
lokal Research Article
lokal Contrast Media/administration
lokal Female [MeSH]
lokal Lung Neoplasms/diagnostic imaging [MeSH]
lokal Computed tomography
lokal Adult [MeSH]
lokal Datasets as Topic [MeSH]
lokal Humans [MeSH]
lokal Middle Aged [MeSH]
lokal Lymph Nodes/diagnostic imaging [MeSH]
lokal Axilla [MeSH]
lokal Lymphatic Metastasis/diagnostic imaging [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3694-0235|https://frl.publisso.de/adhoc/uri/Q2Fyb2x1cywgSGVpa2U=|https://frl.publisso.de/adhoc/uri/SMO2aW5rLCBBbm5hIEou|https://frl.publisso.de/adhoc/uri/QnJvc2NoLCBUb20=|https://frl.publisso.de/adhoc/uri/S2xpbmRlciwgVG9iaWFz|https://frl.publisso.de/adhoc/uri/TWFpbnR6LCBEYXZpZA==|https://frl.publisso.de/adhoc/uri/UGVyc2lnZWhsLCBUaG9yc3Rlbg==|https://frl.publisso.de/adhoc/uri/QmFlw59sZXIsIEJldHRpbmE=|https://frl.publisso.de/adhoc/uri/UMO8c2tlbiwgTWljaGFlbA==
1000 Hinweis
  • DeepGreen-ID: db95c093c2ee4f478a76d557624da48f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6462873.rdf
1000 Erstellt am 2023-11-15T15:04:47.123+0100
1000 Erstellt von 322
1000 beschreibt frl:6462873
1000 Zuletzt bearbeitet 2023-11-30T20:36:24.358+0100
1000 Objekt bearb. Thu Nov 30 20:36:24 CET 2023
1000 Vgl. frl:6462873
1000 Oai Id
  1. oai:frl.publisso.de:frl:6462873 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source