Download
s12911-021-01579-7.pdf 2,54MB
WeightNameValue
1000 Titel
  • Learnings from the design and acceptance of the German COVID-19 tracing app for IS-driven crisis management: a design science research
1000 Autor/in
  1. Behne, Alina |
  2. Krüger, Nicolai |
  3. Beinke, Jan Heinrich |
  4. Teuteberg, Frank |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-08-09
1000 Erschienen in
1000 Quellenangabe
  • 21(1):238
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12911-021-01579-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350273/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!This article investigates the research problem of digital solutions to overcome the pandemic, more closely examining the limited effectiveness and scope of the governmental COVID-19 tracing apps, using the German COVID-19 tracing app (Corona-Warn-App) as an example. A well-designed and effective instrument in the technological toolbox is of utmost importance to overcome the pandemic.!##!Method!#!A multi-methodological design science research approach was applied. In three development and evaluation cycles, we presented, prototyped, and tested user-centered ideas of functional and design improvement. The applied procedure contains (1) a survey featuring 1993 participants from Germany for evaluating the current app, (2) a gathering of recommendations from epidemiologists and from a focus group discussion with IT and health experts identifying relevant functional requirements, and (3) an online survey combined with testing our prototype with 53 participants to evaluate the enhanced tracing app.!##!Results!#!This contribution presents 14 identified issues of the German COVID-19 tracing app, six meta-requirements, and three design principles for COVID-19 tracing apps and future pandemic apps (e.g., more user involvement and transparency). Using an interactive prototype, this study presents an extended pandemic app, containing 13 potential front-end (i.e., information on the regional infection situation, education and health literacy, crowd and event notification) and six potential back-end functional requirements (i.e., ongoing modification of risk score calculation, indoor versus outdoor). In addition, a user story approach for the COVID-19 tracing app was derived from the findings, supporting a holistic development approach.!##!Conclusion!#!Throughout this study, practical relevant findings can be directly transferred to the German and other international COVID-19 tracing applications. Moreover, we apply our findings to crisis management theory-particularly pandemic-related apps-and derive interdisciplinary learnings. It might be recommendable for the involved decision-makers and stakeholders to forego classic application management and switch to using an agile setup, which allows for a more flexible reaction to upcoming changes. It is even more important for governments to have a well-established, flexible, design-oriented process for creating and adapting technology to handle a crisis, as this pandemic will not be the last one.
1000 Sacherschließung
lokal Contact Tracing [MeSH]
gnd 1206347392 COVID-19
lokal Prototype
lokal Corona-Warn-App
lokal User experience design
lokal Humans [MeSH]
lokal Tracing apps
lokal Design science
lokal Pandemics [MeSH]
lokal COVID-19 [MeSH]
lokal eHealth/ telehealth/ mobile health systems
lokal Mobile Applications [MeSH]
lokal SARS-CoV-2 [MeSH]
lokal Research Article
lokal Crisis management
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-9999-5404|https://frl.publisso.de/adhoc/uri/S3LDvGdlciwgTmljb2xhaQ==|https://frl.publisso.de/adhoc/uri/QmVpbmtlLCBKYW4gSGVpbnJpY2g=|https://frl.publisso.de/adhoc/uri/VGV1dGViZXJnLCBGcmFuaw==
1000 Hinweis
  • DeepGreen-ID: 559b9c2ed86946d9bc12eedf598eaf69 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6463609.rdf
1000 Erstellt am 2023-11-15T19:39:48.959+0100
1000 Erstellt von 322
1000 beschreibt frl:6463609
1000 Zuletzt bearbeitet 2023-11-30T21:59:19.100+0100
1000 Objekt bearb. Thu Nov 30 21:59:19 CET 2023
1000 Vgl. frl:6463609
1000 Oai Id
  1. oai:frl.publisso.de:frl:6463609 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source