Download
s12911-020-01195-x.pdf 1,14MB
WeightNameValue
1000 Titel
  • Predicting the amputation risk for patients with diabetic foot ulceration – a Bayesian decision support tool
1000 Autor/in
  1. Hüsers, Jens |
  2. Hafer, Guido |
  3. Heggemann, Jan |
  4. Wiemeyer, Stefan |
  5. John, Swen Malte |
  6. Hübner, Ursula |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-08-24
1000 Erschienen in
1000 Quellenangabe
  • 20(1):200
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12911-020-01195-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446175/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Diabetes mellitus is a major global health issue with a growing prevalence. In this context, the number of diabetic complications is also on the rise, such as diabetic foot ulcers (DFU), which are closely linked to the risk of lower extremity amputation (LEA). Statistical prediction tools may support clinicians to initiate early tertiary LEA prevention for DFU patients. Thus, we designed Bayesian prediction models, as they produce transparent decision rules, quantify uncertainty intuitively and acknowledge prior available scientific knowledge.!##!Method!#!A logistic regression using observational collected according to the standardised PEDIS classification was utilised to compute the six-month amputation risk of DFU patients for two types of LEA: 1.) any-amputation and 2.) major-amputation. Being able to incorporate information which is available before the analysis, the Bayesian models were fitted following a twofold strategy. First, the designed prediction models waive the available information and, second, we incorporated the a priori available scientific knowledge into our models. Then, we evaluated each model with respect to the effect of the predictors and validity of the models. Next, we compared the performance of both models with respect to the incorporation of prior knowledge.!##!Results!#!This study included 237 patients. The mean age was 65.9 (SD 12.3), and 83.5% were male. Concerning the outcome, 31.6% underwent any- and 12.2% underwent a major-amputation procedure. The risk factors of perfusion, ulcer extent and depth revealed an impact on the outcomes, whereas the infection status and sensation did not. The major-amputation model using prior information outperformed the uninformed counterpart (AUC 0.765 vs AUC 0.790, Cohen's d 2.21). In contrast, the models predicting any-amputation performed similarly (0.793 vs 0.790, Cohen's d 0.22).!##!Conclusions!#!Both of the Bayesian amputation risk models showed acceptable prognostic values, and the major-amputation model benefitted from incorporating a priori information from a previous study. Thus, PEDIS serves as a valid foundation for a clinical decision support tool for the prediction of the amputation risk in DFU patients. Furthermore, we demonstrated the use of the available prior scientific information within a Bayesian framework to establish chains of knowledge.
1000 Sacherschließung
lokal Female [MeSH]
lokal Amputation/statistics
lokal Aged [MeSH]
lokal Humans [MeSH]
lokal Health Informatics
lokal Risk Factors [MeSH]
lokal Bayes Theorem [MeSH]
lokal Male [MeSH]
lokal Management of Computing and Information Systems
lokal Standards, technology, machine learning, and modeling
lokal Prognosis [MeSH]
lokal Diabetic Foot/surgery [MeSH]
lokal Information Systems and Communication Service
lokal Diabetic Foot/epidemiology [MeSH]
lokal Research Article
lokal Decision Making [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SMO8c2VycywgSmVucw==|https://frl.publisso.de/adhoc/uri/SGFmZXIsIEd1aWRv|https://frl.publisso.de/adhoc/uri/SGVnZ2VtYW5uLCBKYW4=|https://frl.publisso.de/adhoc/uri/V2llbWV5ZXIsIFN0ZWZhbg==|https://frl.publisso.de/adhoc/uri/Sm9obiwgU3dlbiBNYWx0ZQ==|https://orcid.org/0000-0001-5372-2339
1000 Hinweis
  • DeepGreen-ID: cfff3728ae764efb8cedd7678c9a3200 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6464167.rdf
1000 Erstellt am 2023-11-16T00:46:51.578+0100
1000 Erstellt von 322
1000 beschreibt frl:6464167
1000 Zuletzt bearbeitet 2023-11-30T23:19:24.919+0100
1000 Objekt bearb. Thu Nov 30 23:19:24 CET 2023
1000 Vgl. frl:6464167
1000 Oai Id
  1. oai:frl.publisso.de:frl:6464167 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source