Download
s13643-021-01644-2.pdf 1,49MB
WeightNameValue
1000 Titel
  • Non-invasive and minimally invasive glucose monitoring devices: a systematic review and meta-analysis on diagnostic accuracy of hypoglycaemia detection
1000 Autor/in
  1. Lindner, Nicole |
  2. Kuwabara, Aya |
  3. Holt, Tim |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-05-10
1000 Erschienen in
1000 Quellenangabe
  • 10(1):145
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13643-021-01644-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111899/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!The use of minimally and non-invasive monitoring systems (including continuous glucose monitoring) has increased rapidly over recent years. Up to now, it remains unclear how accurate devices can detect hypoglycaemic episodes. In this systematic review and meta-analysis, we assessed the diagnostic accuracy of minimally and non-invasive hypoglycaemia detection in comparison to capillary or venous blood glucose in patients with type 1 or type 2 diabetes.!##!Methods!#!Clinical Trials.gov, Cochrane Library, Embase, PubMed, ProQuest, Scopus and Web of Science were systematically searched. Two authors independently screened the articles, extracted data using a standardised extraction form and assessed methodological quality using a review-tailored quality assessment tool for diagnostic accuracy studies (QUADAS-2). The diagnostic accuracy of hypoglycaemia detection was analysed via meta-analysis using a bivariate random effects model and meta-regression with regard to pre-specified covariates.!##!Results!#!We identified 3416 nonduplicate articles. Finally, 15 studies with a total of 733 patients were included. Different thresholds for hypoglycaemia detection ranging from 40 to 100 mg/dl were used. Pooled analysis revealed a mean sensitivity of 69.3% [95% CI: 56.8 to 79.4] and a mean specificity of 93.3% [95% CI: 88.2 to 96.3]. Meta-regression analyses showed a better hypoglycaemia detection in studies indicating a higher overall accuracy, whereas year of publication did not significantly influence diagnostic accuracy. An additional analysis shows the absence of evidence for a better performance of the most recent generation of devices.!##!Conclusion!#!Overall, the present data suggest that minimally and non-invasive monitoring systems are not sufficiently accurate for detecting hypoglycaemia in routine use.!##!Systematic review registration!#!PROSPERO 2018 CRD42018104812.
1000 Sacherschließung
lokal Diagnostic accuracy
lokal Sensitivity and Specificity [MeSH]
lokal Blood Glucose [MeSH]
lokal Diabetes Mellitus, Type 2 [MeSH]
lokal Blood Glucose Self-Monitoring [MeSH]
lokal Diabetes mellitus
lokal Research
lokal Humans [MeSH]
lokal Hypoglycemia/diagnosis [MeSH]
lokal Blood glucose self-monitoring
lokal Meta-analysis
lokal Hypoglycemia
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2755-5615|https://frl.publisso.de/adhoc/uri/S3V3YWJhcmEsIEF5YQ==|https://frl.publisso.de/adhoc/uri/SG9sdCwgVGlt
1000 Hinweis
  • DeepGreen-ID: 32ed5864588448e8826dffd79ee4f997 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6464335.rdf
1000 Erstellt am 2023-11-16T02:52:25.101+0100
1000 Erstellt von 322
1000 beschreibt frl:6464335
1000 Zuletzt bearbeitet 2023-11-30T23:41:00.505+0100
1000 Objekt bearb. Thu Nov 30 23:41:00 CET 2023
1000 Vgl. frl:6464335
1000 Oai Id
  1. oai:frl.publisso.de:frl:6464335 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source