Download
s12880-020-00511-1.pdf 1,45MB
WeightNameValue
1000 Titel
  • Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease
1000 Autor/in
  1. Diller, Gerhard-Paul |
  2. Vahle, Julius |
  3. Radke, Robert |
  4. Vidal, Maria Luisa Benesch |
  5. Fischer, Alicia Jeanette |
  6. Bauer, Ulrike M. M. |
  7. Sarikouch, Samir |
  8. Berger, Felix |
  9. Beerbaum, Philipp |
  10. Baumgartner, Helmut |
  11. Orwat, Stefan |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-10-08
1000 Erschienen in
1000 Quellenangabe
  • 20(1):113
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12880-020-00511-1 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542728/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Deep learning algorithms are increasingly used for automatic medical imaging analysis and cardiac chamber segmentation. Especially in congenital heart disease, obtaining a sufficient number of training images and data anonymity issues remain of concern.!##!Methods!#!Progressive generative adversarial networks (PG-GAN) were trained on cardiac magnetic resonance imaging (MRI) frames from a nationwide prospective study to generate synthetic MRI frames. These synthetic frames were subsequently used to train segmentation networks (U-Net) and the quality of the synthetic training images, as well as the performance of the segmentation network was compared to U-Net-based solutions trained entirely on patient data.!##!Results!#!Cardiac MRI data from 303 patients with Tetralogy of Fallot were used for PG-GAN training. Using this model, we generated 100,000 synthetic images with a resolution of 256 × 256 pixels in 4-chamber and 2-chamber views. All synthetic samples were classified as anatomically plausible by human observers. The segmentation performance of the U-Net trained on data from 42 separate patients was statistically significantly better compared to the PG-GAN based training in an external dataset of 50 patients, however, the actual difference in segmentation quality was negligible (< 1% in absolute terms for all models).!##!Conclusion!#!We demonstrate the utility of PG-GANs for generating large amounts of realistically looking cardiac MRI images even in rare cardiac conditions. The generated images are not subject to data anonymity and privacy concerns and can be shared freely between institutions. Training supervised deep learning segmentation networks on this synthetic data yielded similar results compared to direct training on original patient data.
1000 Sacherschließung
lokal Adolescent [MeSH]
lokal Algorithms [MeSH]
lokal Female [MeSH]
lokal Magnetic Resonance Imaging, Cine/methods [MeSH]
lokal Deep Learning [MeSH]
lokal Humans [MeSH]
lokal Prospective Studies [MeSH]
lokal Imaging / Radiology
lokal Radiographic Image Interpretation, Computer-Assisted/methods [MeSH]
lokal Tetralogy of Fallot/diagnostic imaging [MeSH]
lokal Male [MeSH]
lokal Young Adult [MeSH]
lokal Thoracic imaging
lokal Supervised Machine Learning [MeSH]
lokal Research Article
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RGlsbGVyLCBHZXJoYXJkLVBhdWw=|https://frl.publisso.de/adhoc/uri/VmFobGUsIEp1bGl1cw==|https://frl.publisso.de/adhoc/uri/UmFka2UsIFJvYmVydA==|https://frl.publisso.de/adhoc/uri/VmlkYWwsIE1hcmlhIEx1aXNhIEJlbmVzY2g=|https://frl.publisso.de/adhoc/uri/RmlzY2hlciwgQWxpY2lhIEplYW5ldHRl|https://frl.publisso.de/adhoc/uri/QmF1ZXIsIFVscmlrZSBNLiBNLg==|https://frl.publisso.de/adhoc/uri/U2FyaWtvdWNoLCBTYW1pcg==|https://frl.publisso.de/adhoc/uri/QmVyZ2VyLCBGZWxpeA==|https://frl.publisso.de/adhoc/uri/QmVlcmJhdW0sIFBoaWxpcHA=|https://frl.publisso.de/adhoc/uri/QmF1bWdhcnRuZXIsIEhlbG11dA==|https://frl.publisso.de/adhoc/uri/T3J3YXQsIFN0ZWZhbg==
1000 Hinweis
  • DeepGreen-ID: 0dca6e6e4455494082e19082fb29b7eb ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6464569.rdf
1000 Erstellt am 2023-11-16T05:14:01.948+0100
1000 Erstellt von 322
1000 beschreibt frl:6464569
1000 Zuletzt bearbeitet 2023-12-01T00:16:26.079+0100
1000 Objekt bearb. Fri Dec 01 00:16:26 CET 2023
1000 Vgl. frl:6464569
1000 Oai Id
  1. oai:frl.publisso.de:frl:6464569 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source