Download
s12903-021-01862-z.pdf 1,71MB
WeightNameValue
1000 Titel
  • Prediction of oral squamous cell carcinoma based on machine learning of breath samples: a prospective controlled study
1000 Autor/in
  1. Mentel, Sophia |
  2. Gallo, Kathleen |
  3. Wagendorf, Oliver |
  4. Preissner, Robert |
  5. Nahles, Susanne |
  6. Heiland, Max |
  7. Preissner, Saskia |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-10-06
1000 Erschienen in
1000 Quellenangabe
  • 21(1):500
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12903-021-01862-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496028/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!The aim of this study was to evaluate the possibility of breath testing as a method of cancer detection in patients with oral squamous cell carcinoma (OSCC).!##!Methods!#!Breath analysis was performed in 35 OSCC patients prior to surgery. In 22 patients, a subsequent breath test was carried out after surgery. Fifty healthy subjects were evaluated in the control group. Breath sampling was standardized regarding location and patient preparation. All analyses were performed using gas chromatography coupled with ion mobility spectrometry and machine learning.!##!Results!#!Differences in imaging as well as in pre- and postoperative findings of OSCC patients and healthy participants were observed. Specific volatile organic compound signatures were found in OSCC patients. Samples from patients and healthy individuals could be correctly assigned using machine learning with an average accuracy of 86-90%.!##!Conclusions!#!Breath analysis to determine OSCC in patients is promising, and the identification of patterns and the implementation of machine learning require further assessment and optimization. Larger prospective studies are required to use the full potential of machine learning to identify disease signatures in breath volatiles.
1000 Sacherschließung
lokal Volatile organic compounds
lokal Gas chromatography–ion mass spectrometry
lokal Machine learning
lokal Humans [MeSH]
lokal Prospective Studies [MeSH]
lokal Carcinoma, Squamous Cell/diagnosis [MeSH]
lokal Squamous Cell Carcinoma of Head and Neck [MeSH]
lokal Breath analysis
lokal Oral squamous cell carcinoma
lokal Head and neck cancer
lokal Research
lokal Head and Neck Neoplasms [MeSH]
lokal Mouth Neoplasms/diagnosis [MeSH]
lokal Machine Learning [MeSH]
lokal Oral cancer
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWVudGVsLCBTb3BoaWE=|https://frl.publisso.de/adhoc/uri/R2FsbG8sIEthdGhsZWVu|https://frl.publisso.de/adhoc/uri/V2FnZW5kb3JmLCBPbGl2ZXI=|https://frl.publisso.de/adhoc/uri/UHJlaXNzbmVyLCBSb2JlcnQ=|https://frl.publisso.de/adhoc/uri/TmFobGVzLCBTdXNhbm5l|https://frl.publisso.de/adhoc/uri/SGVpbGFuZCwgTWF4|https://frl.publisso.de/adhoc/uri/UHJlaXNzbmVyLCBTYXNraWE=
1000 Hinweis
  • DeepGreen-ID: 3ee0c88f285446bd992fb887dddd86aa ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6465377.rdf
1000 Erstellt am 2023-11-16T13:22:58.227+0100
1000 Erstellt von 322
1000 beschreibt frl:6465377
1000 Zuletzt bearbeitet 2023-12-01T02:08:33.587+0100
1000 Objekt bearb. Fri Dec 01 02:08:33 CET 2023
1000 Vgl. frl:6465377
1000 Oai Id
  1. oai:frl.publisso.de:frl:6465377 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source