Download
s13063-021-05354-x.pdf 824,75KB
WeightNameValue
1000 Titel
  • Survival analysis for AdVerse events with VarYing follow-up times (SAVVY)—estimation of adverse event risks
1000 Autor/in
  1. Stegherr, Regina |
  2. Schmoor, Claudia |
  3. Beyersmann, Jan |
  4. Rufibach, Kaspar |
  5. Jehl, Valentine |
  6. Brückner, Andreas |
  7. Eisele, Lewin |
  8. Künzel, Thomas |
  9. Kupas, Katrin |
  10. Langer, Frank |
  11. Leverkus, Friedhelm |
  12. Loos, Anja |
  13. Norenberg, Christiane |
  14. Voss, Florian |
  15. Friede, Tim |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-06-29
1000 Erschienen in
1000 Quellenangabe
  • 22(1):420
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13063-021-05354-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244188/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!The SAVVY project aims to improve the analyses of adverse events (AEs), whether prespecified or emerging, in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). Although statistical methodologies have advanced, in AE analyses, often the incidence proportion, the incidence density, or a non-parametric Kaplan-Meier estimator are used, which ignore either censoring or CEs. In an empirical study including randomized clinical trials from several sponsor organizations, these potential sources of bias are investigated. The main purpose is to compare the estimators that are typically used to quantify AE risk within trial arms to the non-parametric Aalen-Johansen estimator as the gold-standard for estimating cumulative AE probabilities. A follow-up paper will consider consequences when comparing safety between treatment groups.!##!Methods!#!Estimators are compared with descriptive statistics, graphical displays, and a more formal assessment using a random effects meta-analysis. The influence of different factors on the size of deviations from the gold-standard is investigated in a meta-regression. Comparisons are conducted at the maximum follow-up time and at earlier evaluation times. CEs definition does not only include death before AE but also end of follow-up for AEs due to events related to the disease course or safety of the treatment.!##!Results!#!Ten sponsor organizations provided 17 clinical trials including 186 types of investigated AEs. The one minus Kaplan-Meier estimator was on average about 1.2-fold larger than the Aalen-Johansen estimator and the probability transform of the incidence density ignoring CEs was even 2-fold larger. The average bias using the incidence proportion was less than 5%. Assuming constant hazards using incidence densities was hardly an issue provided that CEs were accounted for. The meta-regression showed that the bias depended mainly on the amount of censoring and on the amount of CEs.!##!Conclusions!#!The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. We recommend using the Aalen-Johansen estimator with an appropriate definition of CEs whenever the risk for AEs is to be quantified and to change the guidelines accordingly.
1000 Sacherschließung
lokal Kaplan-Meier estimator
lokal Follow-Up Studies [MeSH]
lokal Humans [MeSH]
lokal Aalen-Johansen estimator
lokal Drug safety
lokal Incidence [MeSH]
lokal Survival Analysis [MeSH]
lokal Competing events
lokal Incidence proportion
lokal Adverse events
lokal Methodology
lokal Incidence density
lokal Probability [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U3RlZ2hlcnIsIFJlZ2luYQ==|https://frl.publisso.de/adhoc/uri/U2NobW9vciwgQ2xhdWRpYQ==|https://frl.publisso.de/adhoc/uri/QmV5ZXJzbWFubiwgSmFu|https://frl.publisso.de/adhoc/uri/UnVmaWJhY2gsIEthc3Bhcg==|https://frl.publisso.de/adhoc/uri/SmVobCwgVmFsZW50aW5l|https://frl.publisso.de/adhoc/uri/QnLDvGNrbmVyLCBBbmRyZWFz|https://frl.publisso.de/adhoc/uri/RWlzZWxlLCBMZXdpbg==|https://frl.publisso.de/adhoc/uri/S8O8bnplbCwgVGhvbWFz|https://frl.publisso.de/adhoc/uri/S3VwYXMsIEthdHJpbg==|https://frl.publisso.de/adhoc/uri/TGFuZ2VyLCBGcmFuaw==|https://frl.publisso.de/adhoc/uri/TGV2ZXJrdXMsIEZyaWVkaGVsbQ==|https://frl.publisso.de/adhoc/uri/TG9vcywgQW5qYQ==|https://frl.publisso.de/adhoc/uri/Tm9yZW5iZXJnLCBDaHJpc3RpYW5l|https://frl.publisso.de/adhoc/uri/Vm9zcywgRmxvcmlhbg==|https://orcid.org/0000-0001-5347-7441
1000 Hinweis
  • DeepGreen-ID: 4e6500f16a29473ea57dec05cfd3a992 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6465528.rdf
1000 Erstellt am 2023-11-16T14:36:55.095+0100
1000 Erstellt von 322
1000 beschreibt frl:6465528
1000 Zuletzt bearbeitet 2023-12-01T02:24:54.531+0100
1000 Objekt bearb. Fri Dec 01 02:24:54 CET 2023
1000 Vgl. frl:6465528
1000 Oai Id
  1. oai:frl.publisso.de:frl:6465528 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source