Download
s12874-021-01349-z.pdf 1,17MB
WeightNameValue
1000 Titel
  • Quantifying and communicating the burden of COVID-19
1000 Autor/in
  1. von Cube, Maja |
  2. Timsit, Jéan-Francois |
  3. Kammerlander, Andreas |
  4. Schumacher, Martin |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-08-10
1000 Erschienen in
1000 Quellenangabe
  • 21(1):164
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-021-01349-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353440/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!An essential aspect of preventing further COVID-19 outbreaks and to learn for future pandemics is the evaluation of different political strategies, which aim at reducing transmission of and mortality due to COVID-19. One important aspect in this context is the comparison of attributable mortality.!##!Methods!#!We give a comprehensive overview of six epidemiological measures that are used to quantify COVID-19 attributable mortality (p-score, standardized mortality ratio, absolute number of excess deaths, per capita rate, z-score and the population attributable fraction).!##!Results!#!By defining the six measures based on observed and expected deaths, we explain their relationship. Moreover, three publicly available data examples serve to illustrate the interpretational strengths and weaknesses of the various measures. Finally, we give recommendation which measures are suitable for an evaluation of public health strategies against COVID-19. The R code to reproduce the results is available as online supplementary material.!##!Conclusion!#!The number of excess deaths should be always reported together with the population attributable fraction, the p-score or the standardized mortality ratio instead of a per capita rate. For a complete picture of COVID-19 attributable mortality, quantifying and communicating its relative burden also to a lay audience is of major importance.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Mortality [MeSH]
lokal Humans [MeSH]
lokal Excess deaths
lokal Standardized mortality ratio
lokal Z-score
lokal Pandemics [MeSH]
lokal Disease Outbreaks [MeSH]
lokal Preventable deaths
lokal Population attributable fraction
lokal Per capita rate
lokal Public Health [MeSH]
lokal Research
lokal COVID-19 [MeSH]
lokal P-score
lokal SARS-CoV-2 [MeSH]
lokal SARS-CoV-2
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/dm9uIEN1YmUsIE1hamE=|https://frl.publisso.de/adhoc/uri/VGltc2l0LCBKw6lhbi1GcmFuY29pcw==|https://frl.publisso.de/adhoc/uri/S2FtbWVybGFuZGVyLCBBbmRyZWFz|https://frl.publisso.de/adhoc/uri/U2NodW1hY2hlciwgTWFydGlu
1000 Hinweis
  • DeepGreen-ID: 0dbd092d93ee41fa867f06b61b151eaa ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
  1. Quantifying and communicating the burden of COVID-19
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6465610.rdf
1000 Erstellt am 2023-11-16T15:14:55.622+0100
1000 Erstellt von 322
1000 beschreibt frl:6465610
1000 Zuletzt bearbeitet 2023-12-01T02:40:59.116+0100
1000 Objekt bearb. Fri Dec 01 02:40:59 CET 2023
1000 Vgl. frl:6465610
1000 Oai Id
  1. oai:frl.publisso.de:frl:6465610 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source