Download
s13073-021-00925-8.pdf 3,34MB
WeightNameValue
1000 Titel
  • Prediction of combination therapies based on topological modeling of the immune signaling network in multiple sclerosis
1000 Autor/in
  1. Bernardo-Faura, Marti |
  2. Rinas, Melanie |
  3. Wirbel, Jakob |
  4. Pertsovskaya, Inna |
  5. Pliaka, Vicky |
  6. Messinis, Dimitris E. |
  7. Vila, Gemma |
  8. Sakellaropoulos, Theodore |
  9. Faigle, Wolfgang |
  10. Stridh, Pernilla |
  11. Behrens, Janina R. |
  12. Olsson, Tomas |
  13. Martin, Roland |
  14. Paul, Friedemann |
  15. Alexopoulos, Leonidas G. |
  16. Villoslada, Pablo |
  17. Saez-Rodriguez, Julio |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-16
1000 Erschienen in
1000 Quellenangabe
  • 13(1):117
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13073-021-00925-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284018/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Multiple sclerosis (MS) is a major health problem, leading to a significant disability and patient suffering. Although chronic activation of the immune system is a hallmark of the disease, its pathogenesis is poorly understood, while current treatments only ameliorate the disease and may produce severe side effects.!##!Methods!#!Here, we applied a network-based modeling approach based on phosphoproteomic data to uncover the differential activation in signaling wiring between healthy donors, untreated patients, and those under different treatments. Based in the patient-specific networks, we aimed to create a new approach to identify drug combinations that revert signaling to a healthy-like state. We performed ex vivo multiplexed phosphoproteomic assays upon perturbations with multiple drugs and ligands in primary immune cells from 169 subjects (MS patients, n=129 and matched healthy controls, n=40). Patients were either untreated or treated with fingolimod, natalizumab, interferon-β, glatiramer acetate, or the experimental therapy epigallocatechin gallate (EGCG). We generated for each donor a dynamic logic model by fitting a bespoke literature-derived network of MS-related pathways to the perturbation data. Last, we developed an approach based on network topology to identify deregulated interactions whose activity could be reverted to a 'healthy-like' status by combination therapy. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to validate the prediction of combination therapies.!##!Results!#!Analysis of the models uncovered features of healthy-, disease-, and drug-specific signaling networks. We predicted several combinations with approved MS drugs that could revert signaling to a healthy-like state. Specifically, TGF-β activated kinase 1 (TAK1) kinase, involved in Transforming growth factor β-1 proprotein (TGF-β), Toll-like receptor, B cell receptor, and response to inflammation pathways, was found to be highly deregulated and co-druggable with all MS drugs studied. One of these predicted combinations, fingolimod with a TAK1 inhibitor, was validated in an animal model of MS.!##!Conclusions!#!Our approach based on donor-specific signaling networks enables prediction of targets for combination therapy for MS and other complex diseases.
1000 Sacherschließung
lokal Multiple Sclerosis/therapy [MeSH]
lokal Multiple Sclerosis/diagnosis [MeSH]
lokal Combined Modality Therapy/methods [MeSH]
lokal Phosphoproteomics
lokal Phosphoproteins/metabolism [MeSH]
lokal Models, Biological [MeSH]
lokal Disease Management [MeSH]
lokal Personalized medicine
lokal Immune System/immunology [MeSH]
lokal Male [MeSH]
lokal Signal Transduction/drug effects [MeSH]
lokal Case-Control Studies [MeSH]
lokal Network modeling
lokal Treatment
lokal Proteome [MeSH]
lokal Multiple Sclerosis/etiology [MeSH]
lokal Algorithms [MeSH]
lokal Female [MeSH]
lokal Proteomics/methods [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Multiple Sclerosis/metabolism [MeSH]
lokal Treatment Outcome [MeSH]
lokal Middle Aged [MeSH]
lokal Disease Susceptibility [MeSH]
lokal Immune System/drug effects [MeSH]
lokal Immune System/metabolism [MeSH]
lokal Molecular Targeted Therapy [MeSH]
lokal Pathways
lokal Kinases
lokal Multiple sclerosis
lokal xMAP assay
lokal Research
lokal Immunotherapy
lokal Prognosis [MeSH]
lokal Signaling networks
lokal Biomarkers [MeSH]
lokal Logic modeling
lokal Combination therapy
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QmVybmFyZG8tRmF1cmEsIE1hcnRp|https://frl.publisso.de/adhoc/uri/UmluYXMsIE1lbGFuaWU=|https://frl.publisso.de/adhoc/uri/V2lyYmVsLCBKYWtvYg==|https://frl.publisso.de/adhoc/uri/UGVydHNvdnNrYXlhLCBJbm5h|https://frl.publisso.de/adhoc/uri/UGxpYWthLCBWaWNreQ==|https://frl.publisso.de/adhoc/uri/TWVzc2luaXMsIERpbWl0cmlzIEUu|https://frl.publisso.de/adhoc/uri/VmlsYSwgR2VtbWE=|https://frl.publisso.de/adhoc/uri/U2FrZWxsYXJvcG91bG9zLCBUaGVvZG9yZQ==|https://frl.publisso.de/adhoc/uri/RmFpZ2xlLCBXb2xmZ2FuZw==|https://frl.publisso.de/adhoc/uri/U3RyaWRoLCBQZXJuaWxsYQ==|https://frl.publisso.de/adhoc/uri/QmVocmVucywgSmFuaW5hIFIu|https://frl.publisso.de/adhoc/uri/T2xzc29uLCBUb21hcw==|https://frl.publisso.de/adhoc/uri/TWFydGluLCBSb2xhbmQ=|https://frl.publisso.de/adhoc/uri/UGF1bCwgRnJpZWRlbWFubg==|https://frl.publisso.de/adhoc/uri/QWxleG9wb3Vsb3MsIExlb25pZGFzIEcu|https://frl.publisso.de/adhoc/uri/VmlsbG9zbGFkYSwgUGFibG8=|https://orcid.org/0000-0002-8552-8976
1000 Hinweis
  • DeepGreen-ID: 7431345dfb424584a4ff5c4f813d82cb ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6465962.rdf
1000 Erstellt am 2023-11-16T17:43:02.110+0100
1000 Erstellt von 322
1000 beschreibt frl:6465962
1000 Zuletzt bearbeitet 2023-12-01T03:26:03.522+0100
1000 Objekt bearb. Fri Dec 01 03:26:03 CET 2023
1000 Vgl. frl:6465962
1000 Oai Id
  1. oai:frl.publisso.de:frl:6465962 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source