Download
s12874-020-01160-2.pdf 1,38MB
WeightNameValue
1000 Titel
  • Predictive accuracy of a hierarchical logistic model of cumulative SARS-CoV-2 case growth until May 2020
1000 Autor/in
  1. Kriston, Levente |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-11-16
1000 Erschienen in
1000 Quellenangabe
  • 20(1):278
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-020-01160-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668026/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background: Infectious disease predictions models, including virtually all epidemiological models describing the spread of the SARS-CoV-2 pandemic, are rarely evaluated empirically. The aim of the present study was to investigate the predictive accuracy of a prognostic model for forecasting the development of the cumulative number of reported SARS-CoV-2 cases in countries and administrative regions worldwide until the end of May 2020. Methods: The cumulative number of reported SARS-CoV-2 cases was forecasted in 251 regions with a horizon of two weeks, one month, and two months using a hierarchical logistic model at the end of March 2020. Forecasts were compared to actual observations by using a series of evaluation metrics. Results: On average, predictive accuracy was very high in nearly all regions at the two weeks forecast, high in most regions at the one month forecast, and notable in the majority of the regions at the two months forecast. Higher accuracy was associated with the availability of more data for estimation and with a more pronounced cumulative case growth from the first case to the date of estimation. In some strongly affected regions, cumulative case counts were considerably underestimated. Conclusions: With keeping its limitations in mind, the investigated model may be used for the preparation and distribution of resources during the initial phase of epidemics. Future research should primarily address the model's assumptions and its scope of applicability. In addition, establishing a relationship with known mechanisms and traditional epidemiological models of disease transmission would be desirable.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Public health
lokal Coronavirus Infections/diagnosis [MeSH]
lokal Humans [MeSH]
lokal Pneumonia, Viral/transmission [MeSH]
lokal Logistic Models [MeSH]
lokal Predictive Value of Tests [MeSH]
lokal COVID-19
lokal Coronavirus Infections/epidemiology [MeSH]
lokal Forecasting
lokal Coronavirus
lokal Pandemics [MeSH]
lokal Communicable diseases
lokal Data analysis, statistics and modelling
lokal Methodologies for COVID-19 research and data analysis
lokal Coronavirus Infections/transmission [MeSH]
lokal COVID-19 [MeSH]
lokal Pneumonia, Viral/diagnosis [MeSH]
lokal Betacoronavirus [MeSH]
lokal Statistical models
lokal Pneumonia, Viral/epidemiology [MeSH]
lokal SARS-CoV-2 [MeSH]
lokal Research Article
lokal Epidemiologic methods
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-0748-264X
1000 Hinweis
  • DeepGreen-ID: 03687ca3f0a94d61bc874646fb6e2d82 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6466152.rdf
1000 Erstellt am 2023-11-16T18:59:24.287+0100
1000 Erstellt von 322
1000 beschreibt frl:6466152
1000 Zuletzt bearbeitet 2023-12-01T03:45:34.562+0100
1000 Objekt bearb. Fri Dec 01 03:45:34 CET 2023
1000 Vgl. frl:6466152
1000 Oai Id
  1. oai:frl.publisso.de:frl:6466152 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source