Download
s10928-020-09682-4.pdf 1,44MB
WeightNameValue
1000 Titel
  • Assessing parameter uncertainty in small-n pharmacometric analyses: value of the log-likelihood profiling-based sampling importance resampling (LLP-SIR) technique
1000 Autor/in
  1. Broeker, Astrid |
  2. Wicha, Sebastian G. |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-04-04
1000 Erschienen in
1000 Quellenangabe
  • 47(3):219-228
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10928-020-09682-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289778/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Assessing parameter uncertainty is a crucial step in pharmacometric workflows. Small datasets with ten or fewer subjects appear regularly in drug development and therapeutic use, but it is unclear which method to assess parameter uncertainty is preferable in such situations. The aim of this study was to (i) systematically evaluate the performance of standard error (SE), bootstrap (BS), log-likelihood profiling (LLP), Bayesian approaches (BAY) and sampling importance resampling (SIR) to assess parameter uncertainty in small datasets and (ii) to evaluate methods to provide proposal distributions for the SIR. A simulation study was conducted and the 0-95% confidence interval (CI) and coverage for each parameter was evaluated and compared to reference CIs derived by stochastic simulation and estimation (SSE). A newly proposed LLP-SIR, combining the proposal distribution provided by LLP with SIR, was included in addition to conventional SE-SIR and BS-SIR. Additionally, the methods were applied to a clinical dataset. The determined CIs differed substantially across the methods. The CIs of SE, BS, LLP and BAY were not in line with the reference in datasets with ≤ 10 subjects. The best alignment was found for the LLP-SIR, which also provided the best coverage results among the SIR methods. The best overall results regarding the coverage were provided by LLP and BAY across all parameters and dataset sizes. To conclude, the popular SE and BS methods are not suitable to derive parameter uncertainty in small datasets containing ≤ 10 subjects, while best performances were observed with LLP, BAY and LLP-SIR.
1000 Sacherschließung
lokal LLP-SIR
lokal Original Paper
lokal Log-likelihood profiling
lokal Sampling importance resampling
lokal Parameter uncertainty
lokal Bootstrap
lokal Small datasets
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QnJvZWtlciwgQXN0cmlk|https://frl.publisso.de/adhoc/uri/V2ljaGEsIFNlYmFzdGlhbiBHLg==
1000 Hinweis
  • DeepGreen-ID: 0074a87e41214dfb99c6f16729c72864 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6468497.rdf
1000 Erstellt am 2023-11-17T16:44:37.869+0100
1000 Erstellt von 322
1000 beschreibt frl:6468497
1000 Zuletzt bearbeitet 2023-12-01T07:59:38.600+0100
1000 Objekt bearb. Fri Dec 01 07:59:38 CET 2023
1000 Vgl. frl:6468497
1000 Oai Id
  1. oai:frl.publisso.de:frl:6468497 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source