Download
s11548-020-02189-w.pdf 1,73MB
WeightNameValue
1000 Titel
  • Leveraging spatial uncertainty for online error compensation in EMT
1000 Autor/in
  1. Krumb, Henry |
  2. Hofmann, Sofie |
  3. Kügler, David |
  4. Ghazy, Ahmed |
  5. Dorweiler, Bernhard |
  6. Bredemann, Judith |
  7. Schmitt, Robert |
  8. Sakas, Georgios |
  9. Mukhopadhyay, Anirban |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-22
1000 Erschienen in
1000 Quellenangabe
  • 15(6):1043-1051
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-020-02189-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303086/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Purpose!#!Electromagnetic tracking (EMT) can potentially complement fluoroscopic navigation, reducing radiation exposure in a hybrid setting. Due to the susceptibility to external distortions, systematic error in EMT needs to be compensated algorithmically. Compensation algorithms for EMT in guidewire procedures are only practical in an online setting.!##!Methods!#!We collect positional data and train a symmetric artificial neural network (ANN) architecture for compensating navigation error. The results are evaluated in both online and offline scenarios and are compared to polynomial fits. We assess spatial uncertainty of the compensation proposed by the ANN. Simulations based on real data show how this uncertainty measure can be utilized to improve accuracy and limit radiation exposure in hybrid navigation.!##!Results!#!ANNs compensate unseen distortions by more than 70%, outperforming polynomial regression. Working on known distortions, ANNs outperform polynomials as well. We empirically demonstrate a linear relationship between tracking accuracy and model uncertainty. The effectiveness of hybrid tracking is shown in a simulation experiment.!##!Conclusion!#!ANNs are suitable for EMT error compensation and can generalize across unseen distortions. Model uncertainty needs to be assessed when spatial error compensation algorithms are developed, so that training data collection can be optimized. Finally, we find that error compensation in EMT reduces the need for X-ray images in hybrid navigation.
1000 Sacherschließung
lokal Original Article
lokal Algorithms [MeSH]
lokal Radiation Exposure [MeSH]
lokal Humans [MeSH]
lokal Uncertainty analysis
lokal Hybrid navigation
lokal Electromagnetic tracking
lokal Metallic distortion compensation
lokal Electromagnetic Phenomena [MeSH]
lokal Fluoroscopy/methods [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Uncertainty [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S3J1bWIsIEhlbnJ5|https://frl.publisso.de/adhoc/uri/SG9mbWFubiwgU29maWU=|https://frl.publisso.de/adhoc/uri/S8O8Z2xlciwgRGF2aWQ=|https://frl.publisso.de/adhoc/uri/R2hhenksIEFobWVk|https://frl.publisso.de/adhoc/uri/RG9yd2VpbGVyLCBCZXJuaGFyZA==|https://frl.publisso.de/adhoc/uri/QnJlZGVtYW5uLCBKdWRpdGg=|https://frl.publisso.de/adhoc/uri/U2NobWl0dCwgUm9iZXJ0|https://frl.publisso.de/adhoc/uri/U2FrYXMsIEdlb3JnaW9z|https://frl.publisso.de/adhoc/uri/TXVraG9wYWRoeWF5LCBBbmlyYmFu
1000 Hinweis
  • DeepGreen-ID: 20a4926e53ad453db7715faf533407fe ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
  1. Leveraging spatial uncertainty for online error compensation in EMT
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6468832.rdf
1000 Erstellt am 2023-11-17T18:48:20.035+0100
1000 Erstellt von 322
1000 beschreibt frl:6468832
1000 Zuletzt bearbeitet 2023-12-01T08:34:59.943+0100
1000 Objekt bearb. Fri Dec 01 08:34:59 CET 2023
1000 Vgl. frl:6468832
1000 Oai Id
  1. oai:frl.publisso.de:frl:6468832 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source