Download
s00190-020-01376-6.pdf 1,22MB
WeightNameValue
1000 Titel
  • Self-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors
1000 Autor/in
  1. Kargoll, Boris |
  2. Kermarrec, Gaël |
  3. Korte, Johannes |
  4. Alkhatib, Hamza |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-10
1000 Erschienen in
1000 Quellenangabe
  • 94(5):51
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00190-020-01376-6 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>The iteratively reweighted least-squares approach to self-tuning robust adjustment of parameters in linear regression models with autoregressive (AR) and t-distributed random errors, previously established in Kargoll et al. (in J Geod 92(3):271–297, 2018. <jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' ext-link-type='doi' xlink:href='https://doi.org/10.1007/s00190-017-1062-6'>10.1007/s00190-017-1062-6</jats:ext-link>), is extended to multivariate approaches. Multivariate models are used to describe the behavior of multiple observables measured contemporaneously. The proposed approaches allow for the modeling of both auto- and cross-correlations through a vector-autoregressive (VAR) process, where the components of the white-noise input vector are modeled at every time instance either as stochastically independent t-distributed (herein called “stochastic model A”) or as multivariate t-distributed random variables (herein called “stochastic model B”). Both stochastic models are complementary in the sense that the former allows for group-specific degrees of freedom (<jats:italic>df</jats:italic>) of the t-distributions (thus, sensor-component-specific tail or outlier characteristics) but not for correlations within each white-noise vector, whereas the latter allows for such correlations but not for different <jats:italic>df</jats:italic>s. Within the observation equations, nonlinear (differentiable) regression models are generally allowed for. Two different generalized expectation maximization (GEM) algorithms are derived to estimate the regression model parameters jointly with the VAR coefficients, the variance components (in case of stochastic model A) or the cofactor matrix (for stochastic model B), and the <jats:italic>df</jats:italic>(s). To enable the validation of the fitted VAR model and the selection of the best model order, the multivariate portmanteau test and Akaike’s information criterion are applied. The performance of the algorithms and of the white noise test is evaluated by means of Monte Carlo simulations. Furthermore, the suitability of one of the proposed models and the corresponding GEM algorithm is investigated within a case study involving the multivariate modeling and adjustment of time-series data at four GPS stations in the EUREF Permanent Network (EPN).</jats:p>
1000 Sacherschließung
lokal Cross-correlations
lokal Original Article
lokal Multivariate scaled t-distribution
lokal Vector-autoregressive model
lokal Generalized expectation maximization algorithm
lokal Iteratively reweighted least squares
lokal Regression time series
lokal GPS time series
lokal Monte Carlo simulation
lokal Self-tuning robust estimator
lokal Multivariate portmanteau test
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S2FyZ29sbCwgQm9yaXM=|https://frl.publisso.de/adhoc/uri/S2VybWFycmVjLCBHYcOrbA==|https://frl.publisso.de/adhoc/uri/S29ydGUsIEpvaGFubmVz|https://frl.publisso.de/adhoc/uri/QWxraGF0aWIsIEhhbXph
1000 Hinweis
  • DeepGreen-ID: 599962c302294cacaec8de9e7502a0ad ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6469098.rdf
1000 Erstellt am 2023-11-17T20:24:08.173+0100
1000 Erstellt von 322
1000 beschreibt frl:6469098
1000 Zuletzt bearbeitet 2023-12-01T09:13:38.090+0100
1000 Objekt bearb. Fri Dec 01 09:13:38 CET 2023
1000 Vgl. frl:6469098
1000 Oai Id
  1. oai:frl.publisso.de:frl:6469098 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source