Download
s00330-020-07147-3.pdf 3,88MB
WeightNameValue
1000 Titel
  • Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
1000 Autor/in
  1. Koitka, Sven |
  2. Kroll, Lennard |
  3. Malamutmann, Eugen |
  4. Oezcelik, Arzu |
  5. Nensa, Felix |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-09-18
1000 Erschienen in
1000 Quellenangabe
  • 31(4):1795-1804
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00330-020-07147-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979624/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Objectives!#!Body tissue composition is a long-known biomarker with high diagnostic and prognostic value not only in cardiovascular, oncological, and orthopedic diseases but also in rehabilitation medicine or drug dosage. In this study, the aim was to develop a fully automated, reproducible, and quantitative 3D volumetry of body tissue composition from standard CT examinations of the abdomen in order to be able to offer such valuable biomarkers as part of routine clinical imaging.!##!Methods!#!Therefore, an in-house dataset of 40 CTs for training and 10 CTs for testing were fully annotated on every fifth axial slice with five different semantic body regions: abdominal cavity, bones, muscle, subcutaneous tissue, and thoracic cavity. Multi-resolution U-Net 3D neural networks were employed for segmenting these body regions, followed by subclassifying adipose tissue and muscle using known Hounsfield unit limits.!##!Results!#!The Sørensen Dice scores averaged over all semantic regions was 0.9553 and the intra-class correlation coefficients for subclassified tissues were above 0.99.!##!Conclusions!#!Our results show that fully automated body composition analysis on routine CT imaging can provide stable biomarkers across the whole abdomen and not just on L3 slices, which is historically the reference location for analyzing body composition in the clinical routine.!##!Key points!#!• Our study enables fully automated body composition analysis on routine abdomen CT scans. • The best segmentation models for semantic body region segmentation achieved an averaged Sørensen Dice score of 0.9553. • Subclassified tissue volumes achieved intra-class correlation coefficients over 0.99.
1000 Sacherschließung
lokal Tomography, X-Ray Computed [MeSH]
lokal Abdomen
lokal Imaging Informatics and Artificial Intelligence
lokal Humans [MeSH]
lokal Image Processing, Computer-Assisted [MeSH]
lokal Computer-assisted image analysis
lokal Body composition
lokal Semantics [MeSH]
lokal Deep learning
lokal Abdomen [MeSH]
lokal Body Composition [MeSH]
lokal Neural Networks, Computer [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-9704-1180|https://orcid.org/0000-0001-8102-6146|https://orcid.org/0000-0003-4624-5890|https://orcid.org/0000-0002-8353-9532|https://orcid.org/0000-0002-5811-7100
1000 Hinweis
  • DeepGreen-ID: 5b4ba5c8c2ba4cc680543706060e59b3 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6469280.rdf
1000 Erstellt am 2023-11-17T21:35:52.540+0100
1000 Erstellt von 322
1000 beschreibt frl:6469280
1000 Zuletzt bearbeitet 2023-12-01T09:33:37.587+0100
1000 Objekt bearb. Fri Dec 01 09:33:37 CET 2023
1000 Vgl. frl:6469280
1000 Oai Id
  1. oai:frl.publisso.de:frl:6469280 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source