Download
s10198-020-01166-z.pdf 2,25MB
WeightNameValue
1000 Titel
  • Is the whole larger than the sum of its parts? Impact of missing data imputation in economic evaluation conducted alongside randomized controlled trials
1000 Autor/in
  1. Michalowsky, Bernhard |
  2. Hoffmann, Wolfgang |
  3. Kennedy, Kevin |
  4. Xie, Feng |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-02-27
1000 Erschienen in
1000 Quellenangabe
  • 21(5):717-728
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10198-020-01166-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366573/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Outcomes in economic evaluations, such as health utilities and costs, are products of multiple variables, often requiring complete item responses to questionnaires. Therefore, missing data are very common in cost-effectiveness analyses. Multiple imputations (MI) are predominately recommended and could be made either for individual items or at the aggregate level. We, therefore, aimed to assess the precision of both MI approaches (the item imputation vs. aggregate imputation) on the cost-effectiveness results. The original data set came from a cluster-randomized, controlled trial and was used to describe the missing data pattern and compare the differences in the cost-effectiveness results between the two imputation approaches. A simulation study with different missing data scenarios generated based on a complete data set was used to assess the precision of both imputation approaches. For health utility and cost, patients more often had a partial (9% vs. 23%, respectively) rather than complete missing (4% vs. 0%). The imputation approaches differed in the cost-effectiveness results (the item imputation: - 61,079€/QALY vs. the aggregate imputation: 15,399€/QALY). Within the simulation study mean relative bias (< 5% vs. < 10%) and range of bias (< 38% vs. < 83%) to the true incremental cost and incremental QALYs were lower for the item imputation compared to the aggregate imputation. Even when 40% of data were missing, relative bias to true cost-effectiveness curves was less than 16% using the item imputation, but up to 39% for the aggregate imputation. Thus, the imputation strategies could have a significant impact on the cost-effectiveness conclusions when more than 20% of data are missing. The item imputation approach has better precision than the imputation at the aggregate level.
1000 Sacherschließung
lokal I10
lokal I1
lokal C43
lokal Original Paper
lokal Cost-effectiveness analysis
lokal Missing data
lokal C18
lokal Multiple imputation
lokal Cost–utility analysis
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3425-0089|https://frl.publisso.de/adhoc/uri/SG9mZm1hbm4sIFdvbGZnYW5n|https://frl.publisso.de/adhoc/uri/S2VubmVkeSwgS2V2aW4=|https://frl.publisso.de/adhoc/uri/WGllLCBGZW5n
1000 Hinweis
  • DeepGreen-ID: 40adabcb2d0749f29ef3998f4ce8636e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6470594.rdf
1000 Erstellt am 2023-11-18T07:29:12.034+0100
1000 Erstellt von 322
1000 beschreibt frl:6470594
1000 Zuletzt bearbeitet 2023-12-01T12:26:23.119+0100
1000 Objekt bearb. Fri Dec 01 12:26:23 CET 2023
1000 Vgl. frl:6470594
1000 Oai Id
  1. oai:frl.publisso.de:frl:6470594 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source