Download
s10554-020-01935-0.pdf 1,17MB
WeightNameValue
1000 Titel
  • Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm
1000 Autor/in
  1. Böttcher, Benjamin |
  2. Beller, Ebba |
  3. Busse, Anke |
  4. Cantré, Daniel |
  5. Yücel, Seyrani |
  6. Öner, Alper |
  7. Ince, Hüseyin |
  8. Weber, Marc-André |
  9. Meinel, Felix |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-16
1000 Erschienen in
1000 Quellenangabe
  • 36(11):2239-2247
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10554-020-01935-0 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568707/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • To investigate the performance of a deep learning-based algorithm for fully automated quantification of left ventricular (LV) volumes and function in cardiac MRI. We retrospectively analysed MR examinations of 50 patients (74% men, median age 57 years). The most common indications were known or suspected ischemic heart disease, cardiomyopathies or myocarditis. Fully automated analysis of LV volumes and function was performed using a deep learning-based algorithm. The analysis was subsequently corrected by a senior cardiovascular radiologist. Manual volumetric analysis was performed by two radiology trainees. Volumetric results were compared using Bland-Altman statistics and intra-class correlation coefficient. The frequency of clinically relevant differences was analysed using re-classification rates. The fully automated volumetric analysis was completed in a median of 8 s. With expert review and corrections, the analysis required a median of 110 s. Median time required for manual analysis was 3.5 min for a cardiovascular imaging fellow and 9 min for a radiology resident (p < 0.0001 for all comparisons). The correlation between fully automated results and expert-corrected results was very strong with intra-class correlation coefficients of 0.998 for end-diastolic volume, 0.997 for end-systolic volume, 0.899 for stroke volume, 0.972 for ejection fraction and 0.991 for myocardial mass (all p < 0.001). Clinically meaningful differences between fully automated and expert corrected results occurred in 18% of cases, comparable to the rate between the two manual readers (20%). Deep learning-based fully automated analysis of LV volumes and function is feasible, time-efficient and highly accurate. Clinically relevant corrections are required in a minority of cases.
1000 Sacherschließung
lokal Heart Diseases/diagnostic imaging [MeSH]
lokal Ventricular Function, Left [MeSH]
lokal Aged, 80 and over [MeSH]
lokal Aged [MeSH]
lokal Deep Learning [MeSH]
lokal Heart Ventricles/physiopathology [MeSH]
lokal Magnetic Resonance Imaging, Cine [MeSH]
lokal Feasibility Studies [MeSH]
lokal Cardiac magnetic resonance imaging
lokal Quantitative analysis
lokal Male [MeSH]
lokal Left ventricle
lokal Deep learning
lokal Heart Ventricles/diagnostic imaging [MeSH]
lokal Adolescent [MeSH]
lokal Female [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Predictive Value of Tests [MeSH]
lokal Retrospective Studies [MeSH]
lokal Middle Aged [MeSH]
lokal Heart Diseases/physiopathology [MeSH]
lokal Diagnosis, Computer-Assisted [MeSH]
lokal Reproducibility of Results [MeSH]
lokal Automation [MeSH]
lokal Original Paper
lokal Young Adult [MeSH]
lokal Image Interpretation, Computer-Assisted [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QsO2dHRjaGVyLCBCZW5qYW1pbg==|https://frl.publisso.de/adhoc/uri/QmVsbGVyLCBFYmJh|https://frl.publisso.de/adhoc/uri/QnVzc2UsIEFua2U=|https://frl.publisso.de/adhoc/uri/Q2FudHLDqSwgRGFuaWVs|https://frl.publisso.de/adhoc/uri/WcO8Y2VsLCBTZXlyYW5p|https://frl.publisso.de/adhoc/uri/w5ZuZXIsIEFscGVy|https://frl.publisso.de/adhoc/uri/SW5jZSwgSMO8c2V5aW4=|https://orcid.org/0000-0003-3918-8066|https://orcid.org/0000-0002-3201-1033
1000 Hinweis
  • DeepGreen-ID: b01b615b46444388a502b5fc42749c54 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6470758.rdf
1000 Erstellt am 2023-11-18T08:38:20.605+0100
1000 Erstellt von 322
1000 beschreibt frl:6470758
1000 Zuletzt bearbeitet 2023-12-01T12:50:29.354+0100
1000 Objekt bearb. Fri Dec 01 12:50:29 CET 2023
1000 Vgl. frl:6470758
1000 Oai Id
  1. oai:frl.publisso.de:frl:6470758 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source