Download
s41416-020-01122-x.pdf 1,56MB
WeightNameValue
1000 Titel
  • Deep learning in cancer pathology: a new generation of clinical biomarkers
1000 Autor/in
  1. Echle, Amelie |
  2. Rindtorff, Niklas Timon |
  3. Brinker, Titus Josef |
  4. Luedde, Tom |
  5. Pearson, Alexander Thomas |
  6. Kather, Jakob Nikolas |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-11-18
1000 Erschienen in
1000 Quellenangabe
  • 124(4):686-696
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41416-020-01122-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884739/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings.
1000 Sacherschließung
lokal Tumour biomarkers
lokal Deep Learning [MeSH]
lokal Humans [MeSH]
lokal Cancer imaging
lokal Review Article
lokal Computational science
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Neoplasms/pathology [MeSH]
lokal Prognosis [MeSH]
lokal Neoplasms/therapy [MeSH]
lokal Targeted therapies
lokal Biomarkers, Tumor/analysis [MeSH]
lokal Decision Making [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-0789-9509|https://frl.publisso.de/adhoc/uri/UmluZHRvcmZmLCBOaWtsYXMgVGltb24=|https://frl.publisso.de/adhoc/uri/QnJpbmtlciwgVGl0dXMgSm9zZWY=|https://frl.publisso.de/adhoc/uri/THVlZGRlLCBUb20=|https://frl.publisso.de/adhoc/uri/UGVhcnNvbiwgQWxleGFuZGVyIFRob21hcw==|https://orcid.org/0000-0002-3730-5348
1000 Hinweis
  • DeepGreen-ID: 3d8f9b2d60134f35a49482bcd5b437b3 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6471410.rdf
1000 Erstellt am 2023-11-18T13:03:51.732+0100
1000 Erstellt von 322
1000 beschreibt frl:6471410
1000 Zuletzt bearbeitet 2023-12-01T14:19:17.692+0100
1000 Objekt bearb. Fri Dec 01 14:19:17 CET 2023
1000 Vgl. frl:6471410
1000 Oai Id
  1. oai:frl.publisso.de:frl:6471410 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source