Download
50_Ammar_SWAT4HCLS_2024_frl6473256_coverpage.pdf 1,23MB
WeightNameValue
1000 Titel
  • Nanosafety data made interoperable using semantic modeling and linked-data knowledge graphs
1000 Autor/in
  1. Ammar, Ammar |
  2. Willighagen, Egon |
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Kongressschrift |
1000 Online veröffentlicht
  • 2024-03
1000 Erschienen in
1000 Übergeordneter Kongress
1000 Lizenz
1000 Verlagsversion
  • https://www.swat4ls.org/workshops/leiden2024/programme/accepted-submissions-swat4hcls-2024/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Achieving data interoperability is a critical challenge in the increasingly complex landscape of the nanosafety field, where ensuring the safe use of nanomaterials is of great importance. One significant challenge lies in the diversity of experimental approaches, measurement techniques and exchange formats employed in nanosafety research. Fortunately, semantic modeling coupled with linked-data knowledge graphs emerges as a powerful solution. Semantic modeling involves structuring data in a way that adds meaning and context to the information, facilitating better harmonization and standardization. Linked-data knowledge graphs take this a step further by establishing relationships between diverse datasets and their metadata. The semantic model presented in this work adopts several ontologies to describe the datasets and their metadata. For example, DCAT and VoID were used to describe metadata, NPO for nanomaterial entities and BAO and eNanoMapper for bioassays and experimental conditions. The model captures two types of assays, toxicity assays and gene expression assays. This approach utilizes the RDF Mapping Language (RML) to represent the semantic model as reusable mapping rules. Then, the knowledge graph can be explored using SPARQL query language to answer queries such as finding gene expression patterns at concentrations where a nanomaterial is deemed toxic. This semantic approach is essential for advancing our understanding of nanomaterials' safety profiles. It allows for better understanding and seamless data integration and exchange across different applications. Moreover, it inherently complies with the FAIR principles (Findable, Accessible, Interoperable and Reusable), thus making the data more accessible and reusable for the community.
1000 Sacherschließung
lokal Knowledge Graph
lokal Nanosafety Data
lokal Interoperability
lokal Semantic Modeling
lokal FAIR
lokal Linked Data
1000 Fächerklassifikation (DDC)
1000 DOI 10.4126/FRL01-006473256 |
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8399-8990|https://orcid.org/0000-0001-7542-0286
1000 Label
1000 Förderer
  1. Horizon 2020 |
1000 Fördernummer
  1. 814425 ; 814572
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 |
    1000 Förderprogramm -
    1000 Fördernummer 814425 ; 814572
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6473256.rdf
1000 Erstellt am 2024-02-23T08:07:57.345+0100
1000 Erstellt von 338
1000 beschreibt frl:6473256
1000 Bearbeitet von 339
1000 Zuletzt bearbeitet 2024-03-20T09:19:49.748+0100
1000 Objekt bearb. Wed Mar 20 09:19:28 CET 2024
1000 Vgl. frl:6473256
1000 Oai Id
  1. oai:frl.publisso.de:frl:6473256 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source