Download
fnhum-18-1358809.pdf 2,50MB
WeightNameValue
1000 Titel
  • A toolbox for decoding BCI commands based on event-related potentials
1000 Autor/in
  1. Reichert, Christoph |
  2. Sweeney-Reed, Catherine |
  3. Hinrichs, Hermann |
  4. Dürschmid, Stefan |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-04
1000 Erschienen in
1000 Quellenangabe
  • 18:1358809
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fnhum.2024.1358809 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949531/ |
1000 Ergänzendes Material
  • https://www.frontiersin.org/articles/10.3389/fnhum.2024.1358809/full#h12 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Commands in brain-computer interface (BCI) applications often rely on the decoding of event-related potentials (ERP). For instance, the P300 potential is frequently used as a marker of attention to an oddball event. Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control. One challenge in decoding brain activity from the electroencephalogram (EEG) is the selection of the most suitable channels and appropriate features for a particular classification approach. Here we introduce a toolbox that enables ERP-based decoding using the full set of channels, while automatically extracting informative components from relevant channels. The strength of our approach is that it handles sequences of stimuli that encode multiple items using binary classification, such as target vs. nontarget events typically used in ERP-based spellers. We demonstrate examples of application scenarios and evaluate the performance of four openly available datasets: a P300-based matrix speller, a P300-based rapid serial visual presentation (RSVP) speller, a binary BCI based on the N2pc, and a dataset capturing error potentials. We show that our approach achieves performances comparable to those in the original papers, with the advantage that only conventional preprocessing is required by the user, while channel weighting and decoding algorithms are internally performed. Thus, we provide a tool to reliably decode ERPs for BCI use with minimal programming requirements.
1000 Sacherschließung
lokal ERP
lokal P300
lokal canonical correlation analysis
lokal speller
lokal BCI
lokal N2pc
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8649-9791|https://orcid.org/0000-0002-3684-1245|https://frl.publisso.de/adhoc/uri/SGlucmljaHMsIEhlcm1hbm4=|https://frl.publisso.de/adhoc/uri/RMO8cnNjaG1pZCwgU3RlZmFu
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. 521761873; SFB-1436, TPA03
1000 Förderprogramm
  1. -
1000 Dateien
  1. A toolbox for decoding BCI commands based on event-related potentials
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer 521761873; SFB-1436, TPA03
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6473581.rdf
1000 Erstellt am 2024-03-20T14:33:43.803+0100
1000 Erstellt von 242
1000 beschreibt frl:6473581
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2024-04-12T07:00:25.192+0200
1000 Objekt bearb. Fri Apr 12 07:00:12 CEST 2024
1000 Vgl. frl:6473581
1000 Oai Id
  1. oai:frl.publisso.de:frl:6473581 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source