Download
fpsyt-12-688464.pdf 655,95KB
WeightNameValue
1000 Titel
  • Predicting Complex Traits and Exposures From Polygenic Scores and Blood and Buccal DNA Methylation Profiles
1000 Autor/in
  1. Odintsova, Veronika V. |
  2. Rebattu, Valerie |
  3. Hagenbeek, Fiona A. |
  4. Pool, René |
  5. Beck, Jeffrey J. |
  6. Ehli, Erik A. |
  7. van Beijsterveldt, Catharina E. M. |
  8. Ligthart, Lannie |
  9. Willemsen, Gonneke |
  10. de Geus, Eco J. C. |
  11. Hottenga, Jouke-Jan |
  12. Boomsma, Dorret I. |
  13. van Dongen, Jenny |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-29
1000 Erschienen in
1000 Quellenangabe
  • 12:688464
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-31
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fpsyt.2021.688464 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357987/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>We examined the performance of methylation scores (MS) and polygenic scores (PGS) for birth weight, BMI, prenatal maternal smoking exposure, and smoking status to assess the extent to which MS could predict these traits and exposures over and above the PGS in a multi-omics prediction model. MS may be seen as the epigenetic equivalent of PGS, but because of their dynamic nature and sensitivity of non-genetic exposures may add to complex trait prediction independently of PGS. MS and PGS were calculated based on genotype data and DNA-methylation data in blood samples from adults (Illumina 450 K; <jats:italic>N</jats:italic> = 2,431; mean age 35.6) and in buccal samples from children (Illumina EPIC; <jats:italic>N</jats:italic> = 1,128; mean age 9.6) from the Netherlands Twin Register. Weights to construct the scores were obtained from results of large epigenome-wide association studies (EWASs) based on whole blood or cord blood methylation data and genome-wide association studies (GWASs). In adults, MSs in blood predicted independently from PGSs, and outperformed PGSs for BMI, prenatal maternal smoking, and smoking status, but not for birth weight. The largest amount of variance explained by the multi-omics prediction model was for current vs. never smoking (54.6%) of which 54.4% was captured by the MS. The two predictors captured 16% of former vs. never smoking initiation variance (MS:15.5%, PGS: 0.5%), 17.7% of prenatal maternal smoking variance (MS:16.9%, PGS: 0.8%), 11.9% of BMI variance (MS: 6.4%, PGS 5.5%), and 1.9% of birth weight variance (MS: 0.4%, PGS: 1.5%). In children, MSs in buccal samples did not show independent predictive value. The largest amount of variance explained by the two predictors was for prenatal maternal smoking (2.6%), where the MSs contributed 1.5%. These results demonstrate that blood DNA MS in adults explain substantial variance in current smoking, large variance in former smoking, prenatal smoking, and BMI, but not in birth weight. Buccal cell DNA methylation scores have lower predictive value, which could be due to different tissues in the EWAS discovery studies and target sample, as well as to different ages. This study illustrates the value of combining polygenic scores with information from methylation data for complex traits and exposure prediction.</jats:p>
1000 Sacherschließung
lokal multi-omics prediction
lokal Psychiatry
lokal birth weight
lokal smoking
lokal polygenic scores
lokal DNA methylation
lokal BMI
lokal maternal smoking
lokal methylation scores
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/T2RpbnRzb3ZhLCBWZXJvbmlrYSBWLg==|https://frl.publisso.de/adhoc/uri/UmViYXR0dSwgVmFsZXJpZQ==|https://frl.publisso.de/adhoc/uri/SGFnZW5iZWVrLCBGaW9uYSBBLg==|https://frl.publisso.de/adhoc/uri/UG9vbCwgUmVuw6k=|https://frl.publisso.de/adhoc/uri/QmVjaywgSmVmZnJleSBKLg==|https://frl.publisso.de/adhoc/uri/RWhsaSwgRXJpayBBLg==|https://frl.publisso.de/adhoc/uri/dmFuIEJlaWpzdGVydmVsZHQsIENhdGhhcmluYSBFLiBNLg==|https://frl.publisso.de/adhoc/uri/TGlndGhhcnQsIExhbm5pZQ==|https://frl.publisso.de/adhoc/uri/V2lsbGVtc2VuLCBHb25uZWtl|https://frl.publisso.de/adhoc/uri/ZGUgR2V1cywgRWNvIEouIEMu|https://frl.publisso.de/adhoc/uri/SG90dGVuZ2EsIEpvdWtlLUphbg==|https://frl.publisso.de/adhoc/uri/Qm9vbXNtYSwgRG9ycmV0IEku|https://frl.publisso.de/adhoc/uri/dmFuIERvbmdlbiwgSmVubnk=
1000 Hinweis
  • DeepGreen-ID: 3402a0f9d1414a9689970b287bfb29b0 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Seventh Framework Programme |
  2. National Institutes of Health |
  3. FP7 Ideas: European Research Council |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Seventh Framework Programme |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer National Institutes of Health |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer FP7 Ideas: European Research Council |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6475080.rdf
1000 Erstellt am 2024-04-11T14:21:43.640+0200
1000 Erstellt von 322
1000 beschreibt frl:6475080
1000 Zuletzt bearbeitet 2024-04-29T11:30:24.053+0200
1000 Objekt bearb. Mon Apr 29 11:30:24 CEST 2024
1000 Vgl. frl:6475080
1000 Oai Id
  1. oai:frl.publisso.de:frl:6475080 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source