Download
fgene-13-921195.pdf 2,18MB
WeightNameValue
1000 Titel
  • Network analysis of hepatocellular carcinoma liquid biopsies augmented by single-cell sequencing data
1000 Autor/in
  1. Safrastyan, Aram |
  2. Wollny, Damian |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-08-25
1000 Erschienen in
1000 Quellenangabe
  • 13:921195
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fgene.2022.921195 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452847/ |
1000 Ergänzendes Material
  • https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.921195/full#h11 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Liquid biopsy, the analysis of body fluids, represents a promising approach for disease diagnosis and prognosis with minimal intervention. Sequencing cell-free RNA derived from liquid biopsies has been very promising for the diagnosis of several diseases. Cancer research, in particular, has emerged as a prominent candidate since early diagnosis has been shown to be a critical determinant of disease prognosis. Although high-throughput analysis of liquid biopsies has uncovered many differentially expressed genes in the context of cancer, the functional connection between these genes is not investigated in depth. An important approach to remedy this issue is the construction of gene networks which describes the correlation patterns between different genes, thereby allowing to infer their functional organization. In this study, we aimed at characterizing extracellular transcriptome gene networks of hepatocellular carcinoma patients compared to healthy controls. Our analysis revealed a number of genes previously associated with hepatocellular carcinoma and uncovered their association network in the blood. Our study thus demonstrates the feasibility of performing gene co-expression network analysis from cell-free RNA data and its utility in studying hepatocellular carcinoma. Furthermore, we augmented cell-free RNA network analysis with single-cell RNA sequencing data which enables the contextualization of the identified network modules with cell-type specific transcriptomes from the liver.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2FmcmFzdHlhbiwgQXJhbQ==|https://frl.publisso.de/adhoc/uri/V29sbG55LCBEYW1pYW4=
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6475597.rdf
1000 Erstellt am 2024-05-08T08:37:45.525+0200
1000 Erstellt von 336
1000 beschreibt frl:6475597
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2024-05-27T13:26:27.962+0200
1000 Objekt bearb. Mon May 27 13:26:14 CEST 2024
1000 Vgl. frl:6475597
1000 Oai Id
  1. oai:frl.publisso.de:frl:6475597 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source