Download
PIIS200103702200109X.pdf 3,14MB
WeightNameValue
1000 Titel
  • Identification of dynamic driver sets controlling phenotypical landscapes
1000 Autor/in
  1. Werle, Silke D. |
  2. Ikonomi, Nensi |
  3. Schwab, Julian D. |
  4. Kraus, Johann M. |
  5. Weidner, Felix M. |
  6. Rudolph, K. Lenhard |
  7. Pfister, Astrid S. |
  8. Schuler, Rainer |
  9. Kühl, Michael |
  10. Kestler, Hans A. |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-05-26
1000 Erschienen in
1000 Quellenangabe
  • 20:1603-1617
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.csbj.2022.03.034 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010550/ |
1000 Ergänzendes Material
  • https://www.csbj.org/article/S2001-0370(22)00109-X/fulltext#supplementaryMaterial |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Controlling phenotypical landscapes is of vital interest to modern biology. This task becomes highly demanding because cellular decisions involve complex networks engaging in crosstalk interactions. Previous work on control theory indicates that small sets of compounds can control single phenotypes. However, a dynamic approach is missing to determine the drivers of the whole network dynamics. By analyzing 35 biologically motivated Boolean networks, we developed a method to identify small sets of compounds sufficient to decide on the entire phenotypical landscape. These compounds do not strictly prefer highly related compounds and show a smaller impact on the stability of the attractor landscape. The dynamic driver sets include many intervention targets and cellular reprogramming drivers in human networks. Finally, by using a new comprehensive model of colorectal cancer, we provide a complete workflow on how to implement our approach to shift from
  • Controlling phenotypical landscapes is of vital interest to modern biology. This task becomes highly demanding because cellular decisions involve complex networks engaging in crosstalk interactions. Previous work on control theory indicates that small sets of compounds can control single phenotypes. However, a dynamic approach is missing to determine the drivers of the whole network dynamics. By analyzing 35 biologically motivated Boolean networks, we developed a method to identify small sets of compounds sufficient to decide on the entire phenotypical landscape. These compounds do not strictly prefer highly related compounds and show a smaller impact on the stability of the attractor landscape. The dynamic driver sets include many intervention targets and cellular reprogramming drivers in human networks. Finally, by using a new comprehensive model of colorectal cancer, we provide a complete workflow on how to implement our approach to shift from in silico to in vitro guided experiments.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/V2VybGUsIFNpbGtlIEQu|https://frl.publisso.de/adhoc/uri/SWtvbm9taSwgTmVuc2k=|https://frl.publisso.de/adhoc/uri/U2Nod2FiLCBKdWxpYW4gRC4=|https://frl.publisso.de/adhoc/uri/S3JhdXMsIEpvaGFubiBNLg==|https://frl.publisso.de/adhoc/uri/V2VpZG5lciwgRmVsaXggTS4=|https://frl.publisso.de/adhoc/uri/UnVkb2xwaCwgSy4gTGVuaGFyZA==|https://frl.publisso.de/adhoc/uri/UGZpc3RlciwgQXN0cmlkIFMu|https://frl.publisso.de/adhoc/uri/U2NodWxlciwgUmFpbmVy|https://frl.publisso.de/adhoc/uri/S8O8aGwsIE1pY2hhZWw=|https://frl.publisso.de/adhoc/uri/S2VzdGxlciwgSGFucyBBLg==
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6475604.rdf
1000 Erstellt am 2024-05-08T08:41:06.536+0200
1000 Erstellt von 336
1000 beschreibt frl:6475604
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2024-05-22T09:54:06.296+0200
1000 Objekt bearb. Wed May 22 09:53:54 CEST 2024
1000 Vgl. frl:6475604
1000 Oai Id
  1. oai:frl.publisso.de:frl:6475604 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source