Download
s11634-020-00397-5.pdf 2,50MB
WeightNameValue
1000 Titel
  • Chained correlations for feature selection
1000 Autor/in
  1. Lausser, Ludwig |
  2. Szekely, Robin |
  3. Kestler, Hans A. |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-06-09
1000 Erschienen in
1000 Quellenangabe
  • 14(4):871-884
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11634-020-00397-5 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Data-driven algorithms stand and fall with the availability and quality of existing data sources. Both can be limited in high-dimensional settings (). For example, supervised learning algorithms designed for molecular pheno- or genotyping are restricted to samples of the corresponding diagnostic classes. Samples of other related entities, such as arise in differential diagnosis, are usually not utilized in this learning scheme. Nevertheless, they might provide domain knowledge on the background or context of the original diagnostic task. In this work, we discuss the possibility of incorporating samples of foreign classes in the training of diagnostic classification models that can be related to the task of differential diagnosis. Especially in heterogeneous data collections comprising multiple diagnostic categories, the foreign ones can change the magnitude of available samples. More precisely, we utilize this information for the internal feature selection process of diagnostic models. We propose the use of chained correlations of original and foreign diagnostic classes. This method allows the detection of intermediate foreign classes by evaluating the correlation between class labels and features for each pair of original and foreign categories. Interestingly, this criterion does not require direct comparisons of the initial diagnostic groups and therefore, might be suitable for settings with restricted data access.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGF1c3NlciwgTHVkd2ln|https://frl.publisso.de/adhoc/uri/U3pla2VseSwgUm9iaW4=|https://orcid.org/0000-0002-4759-5254
1000 Label
1000 Förderer
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Chained correlations for feature selection
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer http://www.w3.org/1999/02/22-rdf-syntax-ns#nil |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6475656.rdf
1000 Erstellt am 2024-05-08T09:27:02.302+0200
1000 Erstellt von 336
1000 beschreibt frl:6475656
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2024-05-28T09:02:54.106+0200
1000 Objekt bearb. Tue May 28 09:02:35 CEST 2024
1000 Vgl. frl:6475656
1000 Oai Id
  1. oai:frl.publisso.de:frl:6475656 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source