Download
fenrg-09-693249.pdf 4,71MB
WeightNameValue
1000 Titel
  • On-Line Estimation Method of Lithium-Ion Battery Health Status Based on PSO-SVM
1000 Autor/in
  1. Li, Ran |
  2. Li, Wenrui |
  3. Zhang, Haonian |
  4. Zhou, Yongqin |
  5. Tian, Weilong |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-27
1000 Erschienen in
1000 Quellenangabe
  • 9:693249
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-29
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fenrg.2021.693249 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>Battery management system (BMS) refers to a critical electronic control unit in the power battery system of electric vehicles. It is capable of detecting and estimating battery status online, especially estimating state of charge (SOC) and state of health (SOH) accurately. Safe driving and battery life optimization are of high significance. As indicated from recent literature reports, most relevant studies on battery health estimation are offline estimation, and several problems emerged (e.g., long time-consuming, considerable calculation and unable to estimate online). Given this, the present study proposes an online estimation method of lithium-ion health based on particle swarm support vector machine algorithm. By exploiting the data of National Aeronautics and Space Administration (NASA) battery samples, this study explores the changing law of battery state of charge under different battery health. In addition, particle swarm algorithm is adopted to optimize the kernel function of the support vector machine for the joint estimation of battery SOC and SOH. As indicated from the tests (e.g., Dynamic Stress Test), it exhibits good adaptability and feasibility. This study also provides a certain reference for the application of BMS system in electric vehicle battery online detection and state estimation.</jats:p>
1000 Sacherschließung
lokal SOC
lokal BMS
lokal Energy Research
lokal SOH
lokal SVM
lokal lithium battery
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGksIFJhbg==|https://frl.publisso.de/adhoc/uri/TGksIFdlbnJ1aQ==|https://frl.publisso.de/adhoc/uri/WmhhbmcsIEhhb25pYW4=|https://frl.publisso.de/adhoc/uri/WmhvdSwgWW9uZ3Fpbg==|https://frl.publisso.de/adhoc/uri/VGlhbiwgV2VpbG9uZw==
1000 Hinweis
  • DeepGreen-ID: 4acadf7743e7405fbd828ab44d7a1db5 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Key Research and Development Program of China |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Key Research and Development Program of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6475996.rdf
1000 Erstellt am 2024-05-14T09:21:12.975+0200
1000 Erstellt von 322
1000 beschreibt frl:6475996
1000 Zuletzt bearbeitet 2024-05-15T09:00:57.421+0200
1000 Objekt bearb. Wed May 15 09:00:57 CEST 2024
1000 Vgl. frl:6475996
1000 Oai Id
  1. oai:frl.publisso.de:frl:6475996 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source