Download
fenrg-09-723775.pdf 1,76MB
WeightNameValue
1000 Titel
  • Deep Learning-Based Prediction of Wind Power for Multi-turbines in a Wind Farm
1000 Autor/in
  1. Chen, Xiaojiao |
  2. Zhang, Xiuqing |
  3. Dong, Mi |
  4. Huang, Liansheng |
  5. Guo, Yan |
  6. He, Shiying |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-29
1000 Erschienen in
1000 Quellenangabe
  • 9:723775
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-31
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fenrg.2021.723775 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>The prediction of wind power plays an indispensable role in maintaining the stability of the entire power grid. In this paper, a deep learning approach is proposed for the power prediction of multiple wind turbines. Starting from the time series of wind power, it is present a two-stage modeling strategy, in which a deep neural network combines spatiotemporal correlation to simultaneously predict the power of multiple wind turbines. Specifically, the network is a joint model composed of Long Short-Term Memory Network (LSTM) and Convolutional Neural Network (CNN). Herein, the LSTM captures the temporal dependence of the historical power sequence, while the CNN extracts the spatial features among the data, thereby achieving the power prediction for multiple wind turbines. The proposed approach is validated by using the wind power data from an offshore wind farm in China, and the results in comparison with other approaches shows the high prediction preciseness achieved by the proposed approach.</jats:p>
1000 Sacherschließung
lokal convolutional neural network
lokal long short-term memory network
lokal Energy Research
lokal wind turbine
lokal wind farm
lokal spatiotemporal power prediction
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Q2hlbiwgWGlhb2ppYW8=|https://frl.publisso.de/adhoc/uri/WmhhbmcsIFhpdXFpbmc=|https://frl.publisso.de/adhoc/uri/RG9uZywgTWk=|https://frl.publisso.de/adhoc/uri/SHVhbmcsIExpYW5zaGVuZw==|https://frl.publisso.de/adhoc/uri/R3VvLCBZYW4=|https://frl.publisso.de/adhoc/uri/SGUsIFNoaXlpbmc=
1000 Hinweis
  • DeepGreen-ID: 6775bec43c984a84bc6296a68cb0281f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6476767.rdf
1000 Erstellt am 2024-05-14T14:27:35.248+0200
1000 Erstellt von 322
1000 beschreibt frl:6476767
1000 Zuletzt bearbeitet 2024-05-15T10:13:54.560+0200
1000 Objekt bearb. Wed May 15 10:13:54 CEST 2024
1000 Vgl. frl:6476767
1000 Oai Id
  1. oai:frl.publisso.de:frl:6476767 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source