Download
10.1186_s40463-023-00661-6.pdf 1,21MB
WeightNameValue
1000 Titel
  • The accuracy of an Online Sequential Extreme Learning Machine in detecting voice pathology using the Malaysian Voice Pathology Database
1000 Autor/in
  1. Za'im, Nur Ain Nabila |
  2. Al-Dhief, Fahad Taha |
  3. Azman, Mawaddah |
  4. Alsemawi, Majid Razaq Mohamed |
  5. Abdul Latiff, Nurul Mu′azzah |
  6. Mat Baki, Marina |
1000 Verlag
  • SAGE Publications
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-09-01
1000 Erschienen in
1000 Quellenangabe
  • 52(1)
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40463-023-00661-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512596/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:sec><jats:title>Background</jats:title><jats:p> A multidimensional voice quality assessment is recommended for all patients with dysphonia, which requires a patient visit to the otolaryngology clinic. The aim of this study was to determine the accuracy of an online artificial intelligence classifier, the Online Sequential Extreme Learning Machine (OSELM), in detecting voice pathology. In this study, a Malaysian Voice Pathology Database (MVPD), which is the first Malaysian voice database, was created and tested. </jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p> The study included 382 participants (252 normal voices and 130 dysphonic voices) in the proposed database MVPD. Complete data were obtained for both groups, including voice samples, laryngostroboscopy videos, and acoustic analysis. The diagnoses of patients with dysphonia were obtained. Each voice sample was anonymized using a code that was specific to each individual and stored in the MVPD. These voice samples were used to train and test the proposed OSELM algorithm. The performance of OSELM was evaluated and compared with other classifiers in terms of the accuracy, sensitivity, and specificity of detecting and differentiating dysphonic voices. </jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p> The accuracy, sensitivity, and specificity of OSELM in detecting normal and dysphonic voices were 90%, 98%, and 73%, respectively. The classifier differentiated between structural and non-structural vocal fold pathology with accuracy, sensitivity, and specificity of 84%, 89%, and 88%, respectively, while it differentiated between malignant and benign lesions with an accuracy, sensitivity, and specificity of 92%, 100%, and 58%, respectively. Compared to other classifiers, OSELM showed superior accuracy and sensitivity in detecting dysphonic voices, differentiating structural versus non-structural vocal fold pathology, and between malignant and benign voice pathology. </jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p> The OSELM algorithm exhibited the highest accuracy and sensitivity compared to other classifiers in detecting voice pathology, classifying between malignant and benign lesions, and differentiating between structural and non-structural vocal pathology. Hence, it is a promising artificial intelligence that supports an online application to be used as a screening tool to encourage people to seek medical consultation early for a definitive diagnosis of voice pathology. </jats:p></jats:sec>
1000 Sacherschließung
lokal Algorithms [MeSH]
lokal Dysphonia/diagnosis [MeSH]
lokal Accuracy
lokal Humans [MeSH]
lokal Specificity
lokal Voice Quality [MeSH]
lokal Artificial Intelligence [MeSH]
lokal Voice database
lokal Dysphonia
lokal Databases, Factual [MeSH]
lokal Sensitivity
lokal Machine Learning [MeSH]
lokal Original Research Article
lokal Databases as Topic [MeSH]
lokal Online Sequential Extreme Learning Machine
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WmEnaW0sIE51ciBBaW4gTmFiaWxh|https://frl.publisso.de/adhoc/uri/QWwtRGhpZWYsIEZhaGFkIFRhaGE=|https://frl.publisso.de/adhoc/uri/QXptYW4sIE1hd2FkZGFo|https://frl.publisso.de/adhoc/uri/QWxzZW1hd2ksIE1hamlkIFJhemFxIE1vaGFtZWQ=|https://frl.publisso.de/adhoc/uri/QWJkdWwgTGF0aWZmLCBOdXJ1bCBNdeKAsmF6emFo|https://orcid.org/0000-0002-9282-874X
1000 Hinweis
  • DeepGreen-ID: bf5eea868587463bac59736c01eb7498 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universiti Kebangsaan Malaysia |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universiti Kebangsaan Malaysia |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6477916.rdf
1000 Erstellt am 2024-05-21T11:46:51.164+0200
1000 Erstellt von 322
1000 beschreibt frl:6477916
1000 Zuletzt bearbeitet 2024-05-22T09:26:44.427+0200
1000 Objekt bearb. Wed May 22 09:26:44 CEST 2024
1000 Vgl. frl:6477916
1000 Oai Id
  1. oai:frl.publisso.de:frl:6477916 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source