Download
fgene-12-721486.pdf 6,01MB
WeightNameValue
1000 Titel
  • A Novel Model for Identifying Essential Proteins Based on Key Target Convergence Sets
1000 Autor/in
  1. Peng, Jiaxin |
  2. Kuang, Linai |
  3. Zhang, Zhen |
  4. Tan, Yihong |
  5. Chen, Zhiping |
  6. Wang, Lei |
1000 Verlag
  • Frontiers Media S.A.
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-29
1000 Erschienen in
1000 Quellenangabe
  • 12:721486
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-31
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fgene.2021.721486 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358660/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>In recent years, many computational models have been designed to detect essential proteins based on protein-protein interaction (PPI) networks. However, due to the incompleteness of PPI networks, the prediction accuracy of these models is still not satisfactory. In this manuscript, a novel key target convergence sets based prediction model (KTCSPM) is proposed to identify essential proteins. In KTCSPM, a weighted PPI network and a weighted (Domain-Domain Interaction) network are constructed first based on known PPIs and PDIs downloaded from benchmark databases. And then, by integrating these two kinds of networks, a novel weighted PDI network is built. Next, through assigning a unique key target convergence set (KTCS) for each node in the weighted PDI network, an improved method based on the random walk with restart is designed to identify essential proteins. Finally, in order to evaluate the predictive effects of KTCSPM, it is compared with 12 competitive state-of-the-art models, and experimental results show that KTCSPM can achieve better prediction accuracy. Considering the satisfactory predictive performance achieved by KTCSPM, it indicates that KTCSPM might be a good supplement to the future research on prediction of essential proteins.</jats:p>
1000 Sacherschließung
lokal Genetics
lokal protein-protein interaction
lokal essential protein
lokal random walk with restart
lokal key target convergence set
lokal heterogeneous network
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UGVuZywgSmlheGlu|https://frl.publisso.de/adhoc/uri/S3VhbmcsIExpbmFp|https://frl.publisso.de/adhoc/uri/WmhhbmcsIFpoZW4=|https://frl.publisso.de/adhoc/uri/VGFuLCBZaWhvbmc=|https://frl.publisso.de/adhoc/uri/Q2hlbiwgWmhpcGluZw==|https://frl.publisso.de/adhoc/uri/V2FuZywgTGVp
1000 Hinweis
  • DeepGreen-ID: af6506a40ec74d29869d40d569f78cc5 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6478065.rdf
1000 Erstellt am 2024-05-21T12:49:43.143+0200
1000 Erstellt von 322
1000 beschreibt frl:6478065
1000 Zuletzt bearbeitet 2024-05-22T09:50:53.696+0200
1000 Objekt bearb. Wed May 22 09:50:53 CEST 2024
1000 Vgl. frl:6478065
1000 Oai Id
  1. oai:frl.publisso.de:frl:6478065 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source