Download
fphar-12-660313.pdf 1,53MB
WeightNameValue
1000 Titel
  • AI-Based Drug Discovery of TKIs Targeting L858R/T790M/C797S-Mutant EGFR in Non-small Cell Lung Cancer
1000 Autor/in
  1. Choi, Geunho |
  2. Kim, Daegeun |
  3. Oh, Junehwan |
1000 Verlag
  • Frontiers Media S.A.
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-28
1000 Erschienen in
1000 Quellenangabe
  • 12:660313
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-30
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fphar.2021.660313 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356077/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>Lung cancer has a high mortality rate, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Patients have been observed to acquire resistance against various anticancer agents used for NSCLC due to L858R (or Exon del19)/T790M/C797S-EGFR mutations. Therefore, next-generation drugs are being developed to overcome this problem of acquired resistance. The goal of this study was to use artificial intelligence (AI) to discover drug candidates that can overcome acquired resistance and reduce the limitations of the current drug discovery process, such as high costs and long durations of drug design and production. To generate ligands using AI, we collected data related to tyrosine kinase inhibitors (TKIs) from accessible libraries and used LSTM (Long short term memory) based transfer learning (TL) model. Through the simplified molecular-input line-entry system (SMILES) datasets of the generated ligands, we obtained drug-like ligands via parameter-filtering, cyclic skeleton (CSK) analysis, and virtual screening utilizing deep-learning method. Based on the results of this study, we are developing prospective EGFR TKIs for NSCLC that have overcome the limitations of existing third-generation drugs.</jats:p>
1000 Sacherschließung
lokal NSCLC
lokal tyrosine kinase inhibitors (TKIs)
lokal Pharmacology
lokal transfer learning
lokal LSTM
lokal virtual screening
lokal EGFR
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Q2hvaSwgR2V1bmhv|https://frl.publisso.de/adhoc/uri/S2ltLCBEYWVnZXVu|https://frl.publisso.de/adhoc/uri/T2gsIEp1bmVod2Fu
1000 Hinweis
  • DeepGreen-ID: dcd75d2152c842ac958d8ad7fe2a4ce8 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6478821.rdf
1000 Erstellt am 2024-05-21T17:51:31.151+0200
1000 Erstellt von 322
1000 beschreibt frl:6478821
1000 Zuletzt bearbeitet 2024-05-22T11:53:27.971+0200
1000 Objekt bearb. Wed May 22 11:53:27 CEST 2024
1000 Vgl. frl:6478821
1000 Oai Id
  1. oai:frl.publisso.de:frl:6478821 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source