Download
DIB531054.pdf 705,01KB
WeightNameValue
1000 Titel
  • Clinical Validation of Novel Digital Measures: Statistical Methods for Reliability Evaluation
1000 Autor/in
  1. Ratitch, Bohdana |
  2. Trigg, Andrew |
  3. Majumder, Madhurima |
  4. Vlajnic, Vanja |
  5. Rethemeier, Nicole |
  6. Nkulikiyinka, Richard |
1000 Verlag
  • S. Karger AG
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-08-09
1000 Erschienen in
1000 Quellenangabe
  • 7(1):74-91
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1159/000531054 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425717/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Background: Assessment of reliability is one of the key components of the validation process designed to demonstrate that a novel clinical measure assessed by a digital health technology tool is fit-for-purpose in clinical research, care, and decision-making. Reliability assessment contributes to characterization of the signal-to-noise ratio and measurement error and is the first indicator of potential usefulness of the proposed clinical measure. Summary: Methodologies for reliability analyses are scattered across literature on validation of PROs, wet biomarkers, etc., yet are equally useful for digital clinical measures. We review a general modeling framework and statistical metrics typically used for reliability assessments as part of the clinical validation. We also present methods for the assessment of agreement and measurement error, alongside modified approaches for categorical measures. We illustrate the discussed techniques using physical activity data from a wearable device with an accelerometer sensor collected in clinical trial participants. Key Messages: This paper provides statisticians and data scientists, involved in development and validation of novel digital clinical measures, an overview of the statistical methodologies and analytical tools for reliability assessment. </jats:p>
1000 Sacherschließung
lokal Clinical validation
lokal Digital health technology
lokal Review Article
lokal Statistical methods
lokal Reliability
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-9110-3248|https://frl.publisso.de/adhoc/uri/VHJpZ2csIEFuZHJldw==|https://frl.publisso.de/adhoc/uri/TWFqdW1kZXIsIE1hZGh1cmltYQ==|https://orcid.org/0000-0002-4004-9226|https://frl.publisso.de/adhoc/uri/UmV0aGVtZWllciwgTmljb2xl|https://frl.publisso.de/adhoc/uri/Tmt1bGlraXlpbmthLCBSaWNoYXJk
1000 Hinweis
  • DeepGreen-ID: f11c573cd8e049b9b76d929a8672c4d7 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6479346.rdf
1000 Erstellt am 2024-05-21T21:12:17.938+0200
1000 Erstellt von 322
1000 beschreibt frl:6479346
1000 Zuletzt bearbeitet 2024-05-22T13:21:25.028+0200
1000 Objekt bearb. Wed May 22 13:21:25 CEST 2024
1000 Vgl. frl:6479346
1000 Oai Id
  1. oai:frl.publisso.de:frl:6479346 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source