Download
fgene-12-679612.pdf 2,04MB
WeightNameValue
1000 Titel
  • mRBioM: An Algorithm for the Identification of Potential mRNA Biomarkers From Complete Transcriptomic Profiles of Gastric Adenocarcinoma
1000 Autor/in
  1. Dong, Changlong |
  2. Rao, Nini |
  3. Du, Wenju |
  4. Gao, Fenglin |
  5. Lv, Xiaoqin |
  6. Wang, Guangbin |
  7. Zhang, Junpeng |
1000 Verlag
  • Frontiers Media S.A.
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-27
1000 Erschienen in
1000 Quellenangabe
  • 12:679612
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-29
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fgene.2021.679612 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354214/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:sec><jats:title>Purpose</jats:title><jats:p>In this work, an algorithm named mRBioM was developed for the identification of potential mRNA biomarkers (PmBs) from complete transcriptomic RNA profiles of gastric adenocarcinoma (GA).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>mRBioM initially extracts differentially expressed (DE) RNAs (mRNAs, miRNAs, and lncRNAs). Next, mRBioM calculates the total information amount of each DE mRNA based on the coexpression network, including three types of RNAs and the protein-protein interaction network encoded by DE mRNAs. Finally, PmBs were identified according to the variation trend of total information amount of all DE mRNAs. Four PmB-based classifiers without learning and with learning were designed to discriminate the sample types to confirm the reliability of PmBs identified by mRBioM. PmB-based survival analysis was performed. Finally, three other cancer datasets were used to confirm the generalization ability of mRBioM.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>mRBioM identified 55 PmBs (41 upregulated and 14 downregulated) related to GA. The list included thirteen PmBs that have been verified as biomarkers or potential therapeutic targets of gastric cancer, and some PmBs were newly identified. Most PmBs were primarily enriched in the pathways closely related to the occurrence and development of gastric cancer. Cancer-related factors without learning achieved sensitivity, specificity, and accuracy of 0.90, 1, and 0.90, respectively, in the classification of the GA and control samples. Average accuracy, sensitivity, and specificity of the three classifiers with machine learning ranged within 0.94–0.98, 0.94–0.97, and 0.97–1, respectively. The prognostic risk score model constructed by 4 PmBs was able to correctly and significantly (<jats:sup>∗∗∗</jats:sup><jats:italic>p</jats:italic> &amp;lt; 0.001) classify 269 GA patients into the high-risk (<jats:italic>n</jats:italic> = 134) and low-risk (<jats:italic>n</jats:italic> = 135) groups. GA equivalent classification performance was achieved using the complete transcriptomic RNA profiles of colon adenocarcinoma, lung adenocarcinoma, and hepatocellular carcinoma using PmBs identified by mRBioM.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>GA-related PmBs have high specificity and sensitivity and strong prognostic risk prediction. MRBioM has also good generalization. These PmBs may have good application prospects for early diagnosis of GA and may help to elucidate the mechanism governing the occurrence and development of GA. Additionally, mRBioM is expected to be applied for the identification of other cancer-related biomarkers.</jats:p></jats:sec>
1000 Sacherschließung
lokal Genetics
lokal prognosis
lokal sample classification
lokal complete transcriptomic profiles
lokal biomarkers
lokal generalization ability
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RG9uZywgQ2hhbmdsb25n|https://frl.publisso.de/adhoc/uri/UmFvLCBOaW5p|https://frl.publisso.de/adhoc/uri/RHUsIFdlbmp1|https://frl.publisso.de/adhoc/uri/R2FvLCBGZW5nbGlu|https://frl.publisso.de/adhoc/uri/THYsIFhpYW9xaW4=|https://frl.publisso.de/adhoc/uri/V2FuZywgR3VhbmdiaW4=|https://frl.publisso.de/adhoc/uri/WmhhbmcsIEp1bnBlbmc=
1000 Hinweis
  • DeepGreen-ID: 578dfbcf84184ae18b37acffe79559c6 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6479422.rdf
1000 Erstellt am 2024-05-21T21:40:40.931+0200
1000 Erstellt von 322
1000 beschreibt frl:6479422
1000 Zuletzt bearbeitet 2024-05-22T13:34:38.716+0200
1000 Objekt bearb. Wed May 22 13:34:38 CEST 2024
1000 Vgl. frl:6479422
1000 Oai Id
  1. oai:frl.publisso.de:frl:6479422 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source