Download
tc-17-4661-2023.pdf 3,10MB
WeightNameValue
1000 Titel
  • Choice of observation type affects Bayesian calibration of Greenland Ice Sheet model simulations
1000 Autor/in
  1. Felikson, Denis |
  2. Nowicki, Sophie |
  3. Nias, Isabel |
  4. Csatho, Beata |
  5. Schenk, Anton |
  6. Croteau, Michael J. |
  7. Loomis, Bryant |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-11-07
1000 Erschienen in
1000 Quellenangabe
  • 17(11):4661-4673
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-17-4661-2023 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Determining reliable probability distributions for ice sheet mass change over the coming century is critical to refining uncertainties in sea-level rise projections. Bayesian calibration, a method for constraining projection uncertainty using observations, has been previously applied to ice sheet projections but the impact of the chosen observation type on the calibrated posterior probability distributions has not been quantified. Here, we perform three separate Bayesian calibrations to constrain uncertainty in Greenland Ice Sheet (GrIS) simulations of the committed mass loss in 2100 under the current climate, using observations of velocity change, dynamic ice thickness change, and mass change. Comparing the posterior probability distributions shows that the median ice sheet mass change can differ by 119 % for the particular model ensemble that we used, depending on the observation type used in the calibration. More importantly for risk-averse sea-level planning, posterior probabilities of high-end mass change scenarios are highly sensitive to the observation selected for calibration. Furthermore, we show that using mass change observations alone may result in model simulations that overestimate flow acceleration and underestimate dynamic thinning around the margin of the ice sheet. Finally, we look ahead and present ideas for ways to improve Bayesian calibration of ice sheet projections. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RmVsaWtzb24sIERlbmlz|https://frl.publisso.de/adhoc/uri/Tm93aWNraSwgU29waGll|https://frl.publisso.de/adhoc/uri/TmlhcywgSXNhYmVs|https://frl.publisso.de/adhoc/uri/Q3NhdGhvLCBCZWF0YQ==|https://frl.publisso.de/adhoc/uri/U2NoZW5rLCBBbnRvbg==|https://frl.publisso.de/adhoc/uri/Q3JvdGVhdSwgTWljaGFlbMKgSi4=|https://frl.publisso.de/adhoc/uri/TG9vbWlzLCBCcnlhbnQ=
1000 Hinweis
  • DeepGreen-ID: ba4c38c25c974060a2dc3dcc01872ca0 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Aeronautics and Space Administration |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Aeronautics and Space Administration |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6479456.rdf
1000 Erstellt am 2024-05-21T21:53:33.122+0200
1000 Erstellt von 322
1000 beschreibt frl:6479456
1000 Zuletzt bearbeitet 2024-05-22T13:40:21.162+0200
1000 Objekt bearb. Wed May 22 13:40:21 CEST 2024
1000 Vgl. frl:6479456
1000 Oai Id
  1. oai:frl.publisso.de:frl:6479456 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source