Download
fncom-15-666131.pdf 4,50MB
WeightNameValue
1000 Titel
  • Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy
1000 Autor/in
  1. Dora, Shirin |
  2. Bohte, Sander M. |
  3. Pennartz, Cyriel M. A. |
1000 Verlag
  • Frontiers Media S.A.
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-28
1000 Erschienen in
1000 Quellenangabe
  • 15:666131
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2022-01-30
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fncom.2021.666131 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355371/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Abstract/Summary
  • <jats:p>Predictive coding provides a computational paradigm for modeling perceptual processing as the construction of representations accounting for causes of sensory inputs. Here, we developed a scalable, deep network architecture for predictive coding that is trained using a gated Hebbian learning rule and mimics the feedforward and feedback connectivity of the cortex. After training on image datasets, the models formed latent representations in higher areas that allowed reconstruction of the original images. We analyzed low- and high-level properties such as orientation selectivity, object selectivity and sparseness of neuronal populations in the model. As reported experimentally, image selectivity increased systematically across ascending areas in the model hierarchy. Depending on the strength of regularization factors, sparseness also increased from lower to higher areas. The results suggest a rationale as to why experimental results on sparseness across the cortical hierarchy have been inconsistent. Finally, representations for different object classes became more distinguishable from lower to higher areas. Thus, deep neural networks trained using a gated Hebbian formulation of predictive coding can reproduce several properties associated with neuronal responses along the visual cortical hierarchy.</jats:p>
1000 Sacherschließung
lokal sensory neocortex
lokal deep biologically plausible learning
lokal predictive coding
lokal visual processing
lokal Neuroscience
lokal sparseness
lokal selectivity
lokal inference
lokal representation learning
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RG9yYSwgU2hpcmlu|https://frl.publisso.de/adhoc/uri/Qm9odGUsIFNhbmRlciBNLg==|https://frl.publisso.de/adhoc/uri/UGVubmFydHosIEN5cmllbCBNLiBBLg==
1000 Hinweis
  • DeepGreen-ID: 8061cd97f80745c8a67e805285cc7e32 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Horizon 2020 Framework Programme |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 Framework Programme |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6479828.rdf
1000 Erstellt am 2024-05-22T00:20:00.767+0200
1000 Erstellt von 322
1000 beschreibt frl:6479828
1000 Zuletzt bearbeitet 2024-05-22T14:43:38.300+0200
1000 Objekt bearb. Wed May 22 14:43:38 CEST 2024
1000 Vgl. frl:6479828
1000 Oai Id
  1. oai:frl.publisso.de:frl:6479828 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source